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PREFACE

Major improvements and numerous additions to the CINDA-3G program were
generated under NASA Contract NAS 9-8289, "Development of Digital Computer
- Program for Thermal Network Correction". The improved program has been
given the acronym SINDA (Systems Improved Numerical Differencing Analyzer)
not only to reflect the major changes that have been made but also to
. indicate the inherent capabilities of the program.

This SINDA User's Manual generated under the NASA contract cited
above necessarily draws heavily from the CINDA-3G User's Manualj; SINDA
has been programmed to accept "the input data of CINDA-3G. Major additions
- that are described herein are concerned with sensitivity analysis and

thermal network correction. i

4 particular note of interest to users is the semi-annual short course
entitled "Workshop in Heat Trausfer Computer Programs' offered by the
University of California at los Angeles Extension. This course which has
provided numerous "workshops' on the wse of CINDA-3G in the past several
years will be updated to reflect. the present SINDA program.

The monitoring of this NASA program was provided by Mr. R. Dotts;
his helpful suggestions and forthright critiques are gratefully ac-
knowledged. The authors are also indebted to Mrs. Dorothy Gramlich for
suggestions on -the document organizations and the typing of this manuscript.
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i. INTRODUCTION

1.1

1.2

Backgrouad

) *
The original CINDA 1 (chrysler Improved Numerical Differencing
Analyzer) computer program which was developed by the Thermo-~

" dynamics Section of the Aerospace Physies Branch of Chrysler

Corporation Space Division at NASA Michoud Assembly Facility was

‘coded in FORTRAN-II and FA? for the IBM-7094 computers. CINDA was

the result of an intensive analytical, engineering and programming
effort., Numerous thermal analyzer-type programs were surveyed and
several were studied in-depth. The foundation for CINDA was the
storage and addressing of only the informatien required for the
network solution and the systems features which allowed the
yeutilization of core storage area and brought into core only those '
instructions necessary for the solution of a particular problem.

A systems compiler computer program that automatically optimized
the utilization of computer core space was developed. This meant
the generation of an integrated operation of relative addressing,
packing features, peripheral tape storage units and overlay
features.

CINDA evolved into CINDA-362 which was developed by the sane h
group that generated CINDA with a major portion of the work done
under contract NASA/MSC NAS9-7043. CINDA-3G was essentially
rewritten in order to take advantage of the improved systems soft-
ware and machine speeds of the 3rd generation computers. CINDA
was unsuitable for standard operation on third generation computers;
it was virtually a self contained program having its own Update,
Monitor and Compiler. On the other hand, CINDA-3G censisted of a
preprocessor (written in FORTRAN) which accepted the user input
data and converted it into advanced FORTRAN language subroutines
and block data input which was then passed onto the system FORTRAN
Compiler. This required a double pass on data where previously
only one was required but the increased speed and improved software
of the third generation machines more than compensated for the
double pass. ’

SINDA

SINDA (Systems Improved Numerical Differencing Analyzer) was
developed by the Heat Transfer and Thermodynamics Department of TRW
Systems Group. The majority of the improvements and subroutine
additions to CINDA-3G was done as part of the NASA/MSC contract

" NAS 9-8289 entitled "Development of Digital Computer Program for

Thermal Network Correction.” Programming and systems integration
were directed to the UNIVAC-1108 computer.**

* Superscript numbers refer to the references in the Reference Section.

** The UNIVAC~1108 computer at the Jacobi Computation Center, Santa
Monica, California was used in this study in order to insure operation
under the 65K and 131K versions of the EXEC-II operating system

1<
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SINDA relied quite heavily on CINDA-3G and data deck compati-
bility has been rigorously followed; CINDA-3G data decks should be
directly operational on the SINDA program. The primary differences
between SINDA and CINDA-3G are: (1) elimination wherever possible
of assembly language coding; (2) increased mnemonic options to aid
the program user in data input; (3) inclusion of a second pseudo
computer sequence for evaluation of nonlinear network elements; and
(4) additiomal subroutines such as STEP (sensitivity analysis) and
KAL@BS~KALFIL (Kalman filtering).

SINDA program options offer the user a variety of methods for
solution of thermal analog models presented in a network format. The
network represents a one—-to-one correspondence to both the physical
and mathematical models. This analogy facilitates the construction of
mathematical models of complex thermophysical systems and the prepara~
tion of program input. SINDA contains numerous subroutines for handling
interrelated complex phenomena such as sublimation, diffuse radiation
within an enclesure, simultaneous 1-D incompressible f£fluid flow
including valving and transport delay effects, etc. The optional com-
bination of these capabilities available in SINDA in conjunction with
allowable large model size (greater than 4000 nodes for a linear 3-D
system on 65K core) provides the user with a versatile analytical tool.
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MNEMONICS AND NOTATICON

This section was generated to assist the user in identifying the

numercus mnemonic codes and some of the more commonly used notation.
Note that the mnemonic codes that contain interpeolation or poly-
nomlnal are in terms of temperature except as noted. :

2.1 Mnemonics

Code

BCD
BIV

CAL
CGD

CGS

DIM
DIT
DIV

DPM
DPV
DTV

END
GEN
LPCS
@cT
REM
SIM
SIT
SIV

SPCS
SPM
SPV

Binary Coded Decimal

Bivariate Interpolation Variable

Replaces old DEC code - 4-1
CALculate

Code used in CINDA-3G (has been replaced by
DIV but will be accepted by SINDA)

Code used in CINDA-3G (has been replaced by
SIV but will be accepted by SINDA)

Double Interpolation Multiple

Double Interpolation with Time as Variable
Double Interpolation Variable (replaces CGD

of CINDA-3G)

Double Polynomial Multiple

Double Polynomial Variable

Double Interpolation with Time and temperature
as Variables

END of a block of input

GENerate ' . '

Long Pseudo Compute Sequence

0CTal word |

Serves same function as FPRTRAN comment card
Single Interpolation Multiple

Single Interpolation with Time as !ariable
Single Interpolation Variable (replaces CGS of
CINDA-3G)

Short Pseudo Compute Sequence

Single Polynomial Multiple

Single Polynomial Variable

R<

2-1

4-8,

4-8,

4-8,

Page
4-1
4-10,4-18

V-7, 4-14
4-7 ,4-14
leeT7
49 ,4-16 -
4-12,4-15
4-9,4-17
4-12
49 ,4-16
4-9,4-18
4-9, 4-17
4-13
4-2
4-11,4-15
3-10
4-2
b2
4~8,4-16
4-12
4-12,4-15
3-10
4-9,4-17
4-9,4-17
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Notation
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IN _
INA, INB
k

K#

NA, NB

N

#G

#N

H
[
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Array address

Area

Nodal capacitance (=pVCp)
Specific Heat
Multiplying factor

Conductor for linear temperature difference
Represents the radiation coeffieient for
fourth power temperature difference

Conductor number

Increment for the generated conductors
Node generation increment
increment for the generated adjoining nodes
Thermal conductivity

Address of a constant's location
Adjoining node numbers

Node rmumber

Number of conductors

Number of nodes

Time

Temperature

Initiél Temperature

folume

Factor

Coordinate

Factor.

Coordinate

Factor

Coordinate

Factor

Thermal diffusivity

Density
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3. METHOD OF FINITE DIFFERENCE AND SINDA PROGRAM CONSIDERATIONS

3.1 Method of Finite Difference

3.1.1 Lumped-Parameter Representation

The key to utilizing a network type analysis program lies in the
user's ability to develop a lumped parameter representation of the
physical problem.3 Once this is done, superposition of the network
mesh is a mechanical task at most and the numbering of the network
elements is simple altheough perhaps tedious. It might be said that
the network representation is a '"ecrutch" for the engineer, but, it
does simplify the data logistics and allow easy preparation of data
input to the program. In addition, it allows the user to uniquely
identify any element in the network and modify its value or function
during the analysis as well as sense any potential or current flow
in the network. Another feature of the network is that it has a
one-to~-one correspondence to the mathematical model as well as the
physical model. '

The following diagram displays the lumped parameter representation
and network superposltion of a one dimensional heat transfer
problem. .

' i ' ! T
I 4 G 3 P63 Ty LGy Ts

Q T ¢

To
: L
LT - FR  FH =

Figure (3-1)

The "node" points are centrally located within the lumps, and
temperatures T at the nodes are considered uniform throughout the
lump. The capacitors C from the nodes indicate the ability of the
Yump to store thermal energy. Capacltance values are calculated
as lump volume times density times specific heat. The conductors
(electrical symbol G) represent the capability for transmitting
thermal energy from one lump to another. Conductor values for
energy transmission through solids are calculated as thermal
conductivity times the energy cross sectional flow area divided

by path length (distance between nodes). Conductor values for
convective heat transfer are calculated as the convection
coefficient times the energy cross sectional flow area. Conductors
representing energy transfer by radiation are usually indicated by
crossed arrows over the conductor symbol. Radiation is nonlinear;
it is proportional to the difference of the absolute temperatures
raised to the fourth power. Utilization of the Faremheit system
allows easy automation of this nonlinear transfer function by the
program and reduces the Input radiation conductor value to the
product of the Stefan-Boltzmann constant times the surface area
times the net radiant interchange factor (script F).4»%
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Perhaps the most critical aspect of the lumped parameter approach
is determining the lump size. There are methods for optimizing

the lump size but they usually involve more analytical effort and
computer time than the original analysis. One must alse keep in
mind that for a transient problem, time is being luaped as well as
space. Of prime importance is what information 1s being sought from
the analysis. If spot temperatures are being sought, nodes must at
least fall om the spots and not include much more physically than
would be expected to exist at a relatively similar temperature.
Nodes must fall at end points when a temperature gradient is sought.
Of necessity, lumping must be fairly fine where isotherms are
sought. Lumping should be coarse in areas of high thermal conduc-
tivity. When nonlinear properties are being evaluated the lumping
should be fine enough so that extreme gradients are not encountered.
The lumping is also dependent on the severity of the nonlinearity.

In order to reduce round-off error the explicit stability criteria
of the lump (the capacitance value divided by the summation of con-
ductor values into the node) should be held fairly comnstant. This
value (C/ZG) is directly proportional to the square of the distance
between nodes. Although refining the lumped parameter representation
will yvield more accurate answers, halving the distance between nodes
decreases the stability criteria by a factor of four and increases
the number of nodes by a factor of two, four or eight depending

upon whether the problem is one, two or three dimensional. For

the explicit case, halving the distance between nodes increases

the machine time for transient analysis by a factor of eight, six-
teen or thirty-two respectively. The Increase in solution time for
the implicit methods is somewhat less but proportional,

When lumping the time space, consideration must be given to the
frequency of the boundary conditions, A time step must not step
over boundary excitation points or they will be missed. Do not
step over pulses, rather, rise and fall with them. Generally the
computation interval for the explicit methods is sufficiently
small so that frequency effects can be ignored. However, care must
be exercised when specifying the time step for implicit methods.
If only a small portion of a transient analysis involves frequency
considerations the time step used may be selectively restricted
for that interval. By setting the maximum time step allowed as a
function of time, an interpolation call may be utilized to vary

it accordingly.

One must also realize that the problem being solved is linearized
over the time step. Heating rate calculations are usually computed
for a time point and then applied to a time space. If the rates
are nonlinear a certain amount of error is introduced, particularly
50 with radiation. These nonlinear effects may cause almost any
method of solution to diverge. A brute force method for forcing
convergence is to limit the temperature change allowed over the
time space. Consideration of the factors mentioned above, coupled

3-2 G6<
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with some experience in using the program, will aid the observant
analyst in choosing lump sizes that will yield answers of sufficient
engineering accuracy with a reasonable amount of computer time."’

Basics of Finite Differencing

The concept of network superposition on the lumped parameter
representation of a physical system is easy to grasp. Describing
the network to the program is also quite straightforward. Having
described a network to the program, what informaticn have we really
supplied and what does the program do with it? Basically, we
desire the solution to a simultaneous set of partial differential
equations of the diffusion type; 1i.e.,

2 2 2 '
, 2= g 40 (3-1)

ax? ay2 222

3T _ vt + 8
ot

That the diffusivity (o = k/pC ) may be temperature varying or
nonlinear radiation transfer occurrlng is immaterial at this
point. Of importance is how equation (3-1) is finite differenced
and its relationship to the network and energy flow equatlons more
commonly utilized by the engineer. The partial of the T state
variable with respect to time is finite differenced across the
time space as follows:

8T = T°- T (3-2)

where the prime indicates the new T value after passage of the
At time step. '

The right side of equation (3-1) could be written with T primed
to indicate implicit "backward" differencing or unprimed to
indicate explicit "forward' differencing. The following equation
is illustrative of how "backward" and "forward" combinations may
be obtained.®

aT _

o = g(aV?T + §) + (1 —g) (e°92T" + 87) (3-3)

0<p=c1l

Any value of B less then one yields an implicit set of equations
which must be solved in a simultaneous manner (more than one

unknown exists in each equation), Any valuve of B equal to or

less than one half yields an unconditionally stable set of equations,
or in other words, any time step desired may be used. Values

of B greater than one half invoke stability criteria or

limitations on the magnitude of the time step. A value of £ equal

to one half vields an unconditionally stable implicit set of equa-
tions commonly known as '"forward-backward" differemcing or the
Crank-Nicholson method.” Various transformations or first order

3-3 'd<
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integration applied to equation (3-1) generally yield an implicit
set of equations similar to equation (3-3) with R equal to

one half. The following finite difference approach generally
applies to transformed equations,

Let's consider the right side of equation (3-3) with B equal to
one and rewrite it as follows:

2qpg - (8L _ 8T Yy, ofdT 3T }\, of3T _ 3T -
avETHS 2 Ax (Bx— axt + Ay \ oy~ ay+ + Az \ sz~ dz+ +S (3-4)

The minus or plus signs on the first partial denominator terms
indicate that they are taken on the negative or positive side
respectively of the point under consideration and always in the

same direction. . If we consider three consecutive points (1, 2 and 3)
ascending in the x direction we can complete the finite difference
of the x portion of equation (3—4) as follows:

aTs 8Ty YTy - Ty Ty = To
= gl vl B S — 4 —— (3~5)
Ax \ 9x- dxt+ /" Ax Ax- Ax+
Applying the above step to the ¥ and z portions of the equation
(3-4) yields the common denominator of volume (V =Ax*Ay*Az). Using

equation (3-3) with B equal to one, finite differencing with the
steps used for equations (3-3), (3-4), and (3-5), substituting

a = k/pCp and muliiplying both sides by pVC, yields:
pVC . _ kaAx _ kAx _
e Fo ~To) = gpm (T = To) + 55 (T2 = To)

+ X o r) B, - 1)

Ay= by+
. kAz: khz
+ AZ."" (TS - To} + AZ+ (TG - To) + Q (3"6)
where,
Ax = Ay*Az
Ay = Ax¥Az
.Az = Ax¥Ay and
= pVC §
Q PVC,
- !3‘:

3-4
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The numbering system corresponds to the following portion of a
three dimensional network (Figure 3-2).

+y
A
<
2~ -+
Ax
R T ot e P SR I W,
- 4 4?)}»'*'5{
A Ty e s e T g o At
Ax— Ax+t

Figure (3-2)

It should be obvicus that the network capacitance value is pV(Cp,
that the CL value is kAx/Ax—~, etc. Equation (3-6) may be writgen-
as

Co(TA-T ) /8t = Gy (T1-T,) + G2 (T2-T,) = G3(T3-T,) + Gy (Ty=T,)
+ G5(T5-T,) + Gg(T~Ty) + Qg 3-7)

or in engineering terminology the rate of change of temperature with
respect to time is proportional to the summation of heat flows into
the node.

It should be noted that Figure (3-2) is essentially superpositioned
on a lumped parameter cube of a physical system and is the network
representation of equation (3-1). Since equation (3-7) is written im
explicit form, only one unknown (Té) exists and all of the informa-
tion necessary for its solution is contained in the network descrip-
tion. If it had been formulated implicitly it would have to be
solved in a simultanecus manner. No matter what methed of solution
" 15 requested of the program, the information necessary has been
conveyed by the network description. When an implicit set is used
with B greater than zero, the energy flows based on old temperatures
are added to the Q term and the equations are then treated in the
same manner as for B equal to zero. .

aV2T + 8§ =0 ) (3-8)

The solution of Poisson's equation (3-8) is the solution wutilized
for steady state analysis. It is extremely important because all of
the unconditionally stable implicit methods reduce to it. If
equation (3-7) had all the right side values primed and the left side
was subtracted from both sides, we could think of Co/At as a Go term
and T, {0o1ld) would then become a boundary node. In a manner of
speaking, the capacitor we look at in 3-D becomes a conductor in 4-D.

3-5 Q<
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We cculd drav a four dimensional network but since there is no
feedback in time it is senseless to take more than one time step
at a time. However, various time-space transformations can be
utilized such that a one-~dimensional ''transient' analysis yilelds
the solution to a two dimensional steady state problem, etc. This
is analogous to the "Particle in Cell' method developed in the
nuclear field for following shock wave propagation.

3.1.3 TIterative Techniques

Now that we have discussed the correlation between the physical

model, network model and mathematical model, let's investigate

the commonality of the various methods of solution. By describing
the network of Figure (3~1) to the program we have supplied it with
five temperatures, five capacitors, five sources (four not specified
and therefore zero), four conductors and the adjoining node numbers

of the conductors. An explicit formulation such as equation (3-6) has
only one unknown. Its solution is easily obtainable as long as any
associated stability criteria are continuously satisfied. A more
interesting formulation would be a set of 1mplicit equations as

follows:
(T] - T,)C, /ot = Q) + G, (T; - 1)
(Té - TZ)CZIM = Qé + G (Ti - Té) + Gz(’l‘; - Té)
(Ty - T,)C;/at = Q) + G, (1), = T3) + G, (T, ~ Ty) (3-9)
(T; -~ Tu)cqlm: = Q; + Gs(T; - Tl:) + GH(T;’ - T,)
(T - T)C /bt = Q; + GH(T; - T)

If the above had been formulated as a combination of explicit and
implicit, the kwown explicit portion would have been calculated and
added to the Q terms, then the B factor divided into the Q terms
and multiplied times the At term.

If we divide the At term into the C terms and indicate this by
priming C we can reformulate (3-9) as follows: '

1 v r 1 1
((:1 + Gl) '1"1 Q + (:lT1 + 6,1,

T t ot 1 t 1
(c; + (;14.(;2)'1‘2 Q, + csz + (;IT1 + G2T3

t LAV | 1 ! 1 -
(C; +G,4+6,)Ty = Q) + €T, +G,T) +G,T, | (3-10)
(C) + Gg +GH)TL:. = Q) + CyT, + G3T3 + G,Tg
(C. + G,) = Qi + C:T; + G, T,

This equation can be generalized as:

] 1
. CiT, + IG,T) + Q}
i

(3-11)
c' + 16
1 a

36 10<
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where the sub a indicates connection to ‘adjoining nodes. A C'
value of zero yields the standard steady state equation, the
conductor welghted mean of all the surrounding nodes. We see here
that the C' can be thought of as a conductor to the old temperature
value and therefore equation (3-11), although utilized to obtain
transient solutions, can be considered as a steady state equation
in 4-D. By rewriting equations (3-10) in the form of equation (3-11}
we are in a position to discuss iterative techniques. By assuming
all old values on the right hand side of (3-10) we could calculate
a new set of temperatures on ths left which, although wrong, are
closer to the correct answer. This single set of calculations is
termed an iteration. By replacing all of the old temperatures with
those just calculated we can perform another iteration. This
process is called "block" iteration. A faster method is to utilize
only one location for each temperature. This way, the newest
temperature available is always utilized, otherwise old. This
method is termed "successive point" iteration and 1s generally 25%
faster than "block" iteration. The iterative process is continued
a fixed (set by user) number of times or until the maximum absolute
difference between the new and old temperature values is less than
some prespecified value (set by user).

Although the above operations are similar to a relaxation procedure
there is a slight difference. We are performing a set of calcula-
tions in a fixed sequence. A relaxation procedure would continuvously
seek the node with the maximum temperature difference between old and
new and calculate it. Programming wise, as much work is required in
the seeking operation which must be consecutive as in the calculation.
For this reason it would be wasteful to code a true relaxation
method.

In addition to the iterative approach, several solution subroutines
utilize an acceleration feature and/or a different convergence
criteria. Once it can be determined that the temperatures are
approaching the steady state value, an extrapolation is applied

in an attempt to accelerate convergence. This convergence criteria
is the maximum absolute temperature change allowed between iterations.
This criteria however 1s generally one sided and any assoclated
errors are accumulative, In order to obtain greater accuracy, some
subroutines are coded to perform an energy balance on the entire
system (a type of Green's function) and apply successively more
severe convergence crilteria until the system energy balance {(energy
in minus energy out) is within some prespecified tolerance.
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3.2 SINDA Program Considerations

3.2,1 Systems Programming

SINDA is more an operating system rather than an applications
progran. The more one studies aznd uses the program the more
apparent this becomes, In order foxr the program to accomplish
the desired operations with vegard to overlay features, data
packing, dynamic storage allocailon, subroutine library file and
yet be written in Fortran, it was necessary to program SINDA

as a preprocessor. This preprocessor operates in an integral
fashion with a large library of assorted subroutines which

can be called in any sequence desired yet operate in an
integrated manner. It reads all of the iInput data, assigns
relative numbers, packs them, forms the pseudo-compute sequences
and wriltes the operations blocks on a peripheral unit as

Fortran source language with all of the data values dimensioned
exactly in name common. It then turns control over to the
system Fortran compiler which compiles the constructed sub-
routines and enters executlon. The Fortran allocator has

access to the SINDA subroutine library and loads only those
subroutines referred to by the problem being processed.

Due to this type of operation, SINDA is extremely dependent on
the systems software supplied. However, once the program has
been made operational on a particular machine, the problem data
deck prepared by the user can be considered as machine indepen-
dent. The user need only be aware of the control cards and
deck setup requirements at his particular installation.

3.2.2 Pseudo-Compute Sequence
When working with a simultaneous set cof equations such as

equation (3-10), they are quite often treated by matrix methods
and formulated as follows:

A {T} = {B}. (3-12)

where [ ‘ -
. (C;+G1) -G, 0 -0 0
. -Gy (C§+GI+G2) -G, 0 0 _
A = 0 -G, (C;+G2+G3) ~Gq 0 (3-13)
0 0 ~Gq (C;+63+Gh) =Gy '
0 .q 0 -G, (C%+GH)J.
1<
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and
Ty U
T Q¥ T,
{T'} = { T3 | {B} = {Qi+CiT,
T, QUHC, Ty,
T} Qi+C3Ts

The inverse of [A] is then calculated and the sclution obtained
by matrix multiplication.

{'T'} = [Ajl{n} (3-14)

It should be noted that the one dimensional problem has no more
than three finite values in any row or column of the coefficient
matrix [A]. A three dimensional problem would generally have no
more than seven finite values in any row or column. It is easy
to see that a one thousand node three dimensional problem would
require one million data locations of which appreximately 953,000
would contain zero. The inverse might require an additional one
million data locations. Aside from exceeding computer core area,
the computer time required to caleulate the inverse is proportional
to the cube of the problem size and large problems scon become
uneconomlcal to solve,

The explicit and iterative implicit methods previously discussed

are well suited for optimizing the data storage area required and
reducing the solution time. Note the adjoining node numbers
assoclated with the conductors of Figure (3-1) as shown in Table (3-1).

Table (3-1)
G# Ni#t Nt
1,1,2 + Gl between nodes 1 and 2
2,2,3 + G2 between nodes 2 and 3
3,3,4 +  G3 between nodeg 3 and 4
4,4,5 + G4 between nodes 4 and 5

Note also the row and column position of conductor values off the
main diagonal in the [A] coefficient matrix, equation (3-13), By
retaining the adjoining node numbers for each conductor we are
able to identify their element position in the coefficient matrix.
As a consequence, we need store only the finite values. The main
diagenal term is a composite of the node capacitance and conductor
values off of the main diagonal, ‘

The SINDA preprocessor operates on the adjoining node numbers to

form wvhat is termed a pseudo-compute sequence (PC5). The nodes
are to be calculated sequentially in ascending relative order so the
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conductor adjoining node numbers are searched until number one is
found. When this occurs the conductor number and other adjoining
node number are stored in a single core location. Several indica-
tors are also stored in this single core location. They reveal if
the capacitor of the node under consideration is non-linear, of a
source from the source data block is present (required for thermal
network correction) and whether the conductor value is nonlinear,
radlation, one way or the last one to the node under consideration.
The search is continued until all ones are located. The process is
then continued for node two, ete, until all the node numbers have
been processed. The pseudo-compute sequence formed is shown in
Table (3-2). A slight variation to this operation is to place a
minus sign on the original other adjoining node numver so that it
is not recognized when it is searched for. The resulting pseudo-
compute sequence thus formed is shown in Table (3-3).

Table (3-2) Long Pseudo-Cbmpute Sequence {LPCS)

last ¢ wvar C var G rad Q@ Gf oneway N wvar Q

1 1 2
1 1

1 2 3
-2 2

1 3 4
3 3

1 4 5
1 4 4

Table (3-3) Short Pseudo-Compute Sequence (SPCS)

last ¢ var C var 6 rad Q Gf oneway NFf wvar Q

P g
O Wy e
oW W

The above pseudo-compute sequences are termed long (LCPS) and
short (SPCS) respectively. By starting at the top of the pseudo-
compute sequence we are operating on node one. The Gff and Nff
values identify the comductor into the node {(the position of

the conductor value in an array of conductor values) and the
adjoining node (the position of the temperature, capacitor and
source values in arrays of temperature, capacitor and source
values respectively). The node being operated on starts as one
and is advanced by one each time a last conductor indicator is
passed, '

It is easy to see that the long pseudo-compute sequence jdentifies
the element position and value locations of all the off diagonal

3-107 &<
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elements of the row being operated on. It takes complete advantage
of the sparsity of the coefficient matrix. It is well suited for
"successive point" iteration of the implicit equations because all
elements in a row are identified. When a row is processed and the
new T value obtained, the new T can then be used in the calculation
procedure of succeeding rows.

The short pseudo-compute sequence identifies each conductor only
once and in this manner takes advantage of the symmetry of the
coefficient matrix as well as the sparsity. It is well suited for
explicit methods of solution. The node being operated on and the
adjoining node number reveal their temperature value locations and
their source value locations. The explicit solution subroutines
calcuiate the energy flow through the comductor, add it to the
source location of the node being worked on and subtract it from
the source location for the adjoining node. However, 1f the short
pseudo—compute sequence were utilized for implicit methods of
solution they would require the use of slower "block" iterative
procedures. The succeeding rows do not have all of the elements
defined and the energy rates passed ahead were based on old tempera-
ture values.

The variable capacitor, conductor and source indicators in the
above pseudo-compute sSedquences are no more than yes or no switches,
each occupying one bit of the core location. Each time a variable
switch is found yes a location counter is increased by one and used
as a pointer to an entry point in a second pseudo-compute sequence.
The location indicated contains three values in the core location;
the type of variable or nonlinearity and the array and constant
locations of required data for evaluating the function. This
method of storing information on nonlinear network elements is
extremely conservative of core space and also quite efficient.

3.2.3 Data Logistics

The long and short pseudo-compute sequences formulated as shown
previously allow the program to store only the finite values

in the coefficient matrix thereby taking advantage of its sparsity.
In addition, the short pseudo-compute sequence takes advantage of
any symmetry which may exist. Multiple comnected conductors which
will be covered in the next section also allow the user to take
advantage of similarity as well. The foregoing is fairly easy to
follow, especially if the nodes and conducters start with the

number one and continue sequentially with no missing numbers. This
restriction is too limiting for general use on large network models.
To overceome this restriction the program assigns relative numbers
(sequential and ascending) to the incoming node data, conductor data,
constants data and array data in the order received. Any numbers
missing in the actual numbering system set up by the user are packed
out thereby requiring only as much core space as is actually necessary.

15<
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All network solutlon subroutines require three locations for
diffusion node data (temperature, capacitance and source) and
one location for each conductor value. They also may require
from zero to three extra locations per node for intermediate
data storage. FEach node in a three dimensional network has
essentlally six conductors connected to it but only three are
unique; 1.e., each additional node requires only three more
conductors. Hence, each node in a three dircensional system
requires from six to nine storage locations for data values
(temperature, capacitance, source, three couductors and up to
three Intermediate locations). The two integer values and six
indicators that make up the first pseudo-compute sequence are
packed inte a single core location. Hence, for a three
dimensional network, each node requires approximately three
locations for data addressing for the short and six locations
for the long pseudo-compute sequence. The number of core
locations required per node can vary from nine to fifteen exclu-
sive of the second pseudo~compute sequence for nonlinear elements.

The program requires the user to allocate an array of data
locations to be used for intermediate data storage and initialize
artay start and length indicators. Each subroutine that requires
intermediate storage area has access toc this array and the start
and length indicators. They check to sesz that there is sufficient
space, update the start and length indicators and continue with
their operations. If they call upon another subroutine requiring
intermediate storage, the secondary subroutine repeats the check
and update process. Whenever any subroutine terminates its
operations it returns the start and length indicators to their
entry values. This process is termed "Dynamic Storage Allccation"
and allows subroutines to share a comwmon working area.

3.2.4 Order of Computation

A problem data deck consists of four data and four operations
"blocks" which are preprocessed by SINDA and passed on to the
system FPRTRAN compiler. The operations blocks are named EXECUTI@N,
VARIABLES 1, VARIABLES 2 and @UTPUT CALLS. The SINDA preprocessor

. constructs these blocks into individual subroutines with the entry
names EXECTN, VARBL1, VARBL2 and @UTCAL respectively. After a
successful FPRTRAN compilation, control is passed te the EXECTN
subroutine. Therefore, the order of computation depends on the
sequence of subroutine calls placed in the EXECUTI®N block by the
program user. No other operations blocks are performed unless
called upon by the user either directly by name or indirectly from
some subroutine which internally calls upon them. The network
solution subroutines listed In Section A.2 internally call upon
VARBL1l, VARBL2 and @UTCAL. Their internal order of computation is
quite similar, the primary difference being the analytical method by
which they solve the network. Figure (3-3) represents a flow diagram
of all the network scolution subroutines; the subroutine writeups contain
the comparisons made at the various check points and routings taken.

312 T6<
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Calculate time step

Variables 1 operations

Solve HNetwork

Varizbles .2 operations

Output calls cperatioms

Modify time control

Frase iteration
- - L 3 L] - L] - L] L] - - * L]

Reverse direction if

Backup nonzero

Relzxation criteria not met

Time ur temp change too large

3

Backup nonzero

Not time to print

Problem stop time not reached

BASIC FLOW CHART FOR NETWORK SOLUTION SUBROUTINES
FIGURE (3-3) '
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INPUT REQUIREMENTS

General

A SINDA problem data deck consists of both data and 1nstruction cards.
The card reading subroutines for SINDA do not utilize a fixed format
type of input; they use a free form format quite similar to the old
SHARE decimal data read routine. The type of data is designated by a
mnemonic code in columns eight, nine and ten. This is followed by the
data field which consists of columns twelve through eighty or the
instruction field which consists of columns twelve through seventy-two.
Although blanks are allowed before or after numerical data, they may
not be contained within; that 1s, the number 1.234 is fine, but

1. 234 will cause the program to abort. The program processes and
stores the problem data as FURTRAN name common data and reforms
instructions into FPRTRAN source language which are then passed on to
the system FPRTRAN compiler. Instruction cards which contain awn F in
column one are passed on exactly as received, except that the F is
repositioned to column 80, Cards containing a € in column one are
passed on as recelved to become FPRTRAN comment cards. Any instruction
card wvith or without an F in column one may contain a statement or
sequence number in columns two through five which is passed on to and
used by the FYRTRAN compiler.

Mnemonic Codes

.1 01d DEC Code (replaced by three blanks) and Dollar Sign ($)

The most frequently used mnemonic code was the old DEC designation
which has been replaced by three blanks. The data following this
blank mnemonic code may be one or more integers, floating point
numbers (with or without the E exponent designation) or alpha-
numeric words of up to six characters each., The reading of a word
or number continues until a comma is encountered and then the

next word or number is read. As many numbers or words as desired
may be placed on a card but they may not be broken between cards.
A new card 1s equivalent to starting with a comma and therefore no
continuation designation i1s required or allowed. All blanks are
ignored and reading continues until the terminal column is reached
or a dollar sign encountered. Comments pertinent to a data card
may be placed after a dollar sign and are not processed by the
program. If sequential commas are encountered, floating point
zero values are placed between them.

4.1.1.2 BCD Code

The next most frequently used code is BCD (for binary ccded decimal)
which must be followed by an integer omne through nine in column
twelve. The integer designates the number of six character words
immediately following it. Blanks are retained and only the
designated number of six character words are read from the card,

WL
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4.1.1.3 END

Mnemenic code END is utilized to desigﬁate the end of a block of
input to the program.

4.1.1.4 REM ,

Code REM serves the same function as a FPRTRAN comment card; it
is not processed by the program but allows the user to insert
non-data for clarification purposes.

4.1.1.5 Codes for Honlinear Elements

4,2

Special codes for genmeration and/or evaluation of nonlinear
elements are discussed in a later paragraph.

Inpuf Blocks

The data deck prepared by a program user consists of various input

"blocks'" containing either data or instructions. There are either two or
four data blocks (an additional one is optional) and four operations blocks
in addition to the title block. A fixed sequence of bleek input as indi-
cated below is required and each block must start with a BCD 3 header card
and terminate with an END (mnemonic codes). At the end of the deck that

contains the data and operations blocks, a termination card (ECD 3END @F
DATA) must be used. Note that even though an input block 18 not required
for a given problem, all input bloecks must be input, source excepted.
Before presenting details about the various data and operations blocks,
it may be helpful if a list of required input blocks with a brief
description of each were presented at this time.

(1) Title Bleck (Refer to Section 4.2.1)
(Col) & 12 '

: BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAIL LPCS

Comment: The TITLE block normally contains a header generated by
by the user. The GENERAL indicates that the problem is non-network
and thus requires no node or conductor data block. The THERMAL
cards indicate that the problem is represented as a network and
that either a short (SPCS) or long (LPCS) pseudo-compute sequence
is to be constructed (Paragraph 3.2.2). Specification of LPCS or
SPCS is cbtained from the execution subroutines (Section A.2).

Note that LPCS subroutines must not be mixed with the SPCS sub-
routines. An END (memonic code) is required.

(2) Node Data Block (Refer to Section 4.2.2)
(Col) & 12
BCD 3N@DE DATA

4-2
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Comment: The NODE DATA block contains the node number, the type
(diffusion, arithmetic, and boundary), the initial temperature,
and the capacitance if applicable.-

A number of options that are concerned with the sequential
generatien of nodes, temperature varying capacitance, etc.
is available for specific requirements.

This data block is not required if the title block is BCD 3GENERAL.

An END {mnemonic code) card is required.
Optional Source Data Block (Refer to Sectiom 4.2.3)

(Col) B 12
ECD 3SJURCE DATA
Comment s Optidnal neans that if data for the Q block is not an

input, then the block header card and the END (mnemonic code) need
net be imcluded in the data deck.

The SPURCE DATA block contains the node number and the source value.

A number of options that involve temperature varying sources, time
varying sources, sequential generation of sources. etc. is available

for spesific requirements.

An END {ememonic code) card is required

Conductor Data Block (Refer to Section 4.2.4)
(Col) 8 12
BCD 3CENDUCT@R DATA

Comment: The CﬁNDUCTﬁR DATA block contains the conductor number,
the type (linear or radiation), adjoining node number, and con-
ductor walues.

A number of options for specific requirements, such as the
sequential generation of conductors, temperature varying con-

 ductors, etc., is available.

This data block is not required if the title block is BCD 3GENERAL.
An END {mmemonic code) card is required.

Constants Data Block (Refer to Section 4.2.5)
{Col) 38 12
BCD 3CPNSTANTS DATA

Comment: The CONSTANTS DATA block is always Inputted as doublets.
The doublet may be a control constant and value or user constant
and value. User constants are simply data storage locations or
control constants having alphanumeric names and the values are
communicated through programs common to specific subroutines
which require them.

20<
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Array Data Block (Refer to Section 4.2.86)
(Col) 8 12
BCD 3ARRAY DATA (Refer to Section 4.2.6)

Comment: The ARRAY DATA iInput consists of an array number, a
sequential list of information and termination with an END (data
END, not mmemonic).

’

An END (mnemonic code) card is required.

Execution Operations Block (Refer to Section 4.2.7 and
Paragraph 4.2.7.2)

~(Col) 8 12

BCD 3EXECUTI@N

Comment: The EXECUTIPN operations block is the first of four
operations blocks (EXECUTI@N, VARIABLES 1, VARIABLES 2, and
PUTPUT CALLS). . These feur operations blocks are preprocessed by
SINDA and passed on to the system FPRTRAN compiler as four
separate subroutines, EXECTN, VARBL1, VARBLZ, and @UTCAL.

None of the operations specified in VARBL1, VARBLZ, or @UTCAL will
be performed unless called either directly by name in the
EXECUTION block or internally by a subroutine.

An END {memonic code) card is required.

Variables 1 Operation Block (Refer to Section 4.2.7 and
Paragraph 4.2.7.3) :

(Col) 8 i2
BCB 3VARIABLES 1

Comment: The VARIABLES 1 operations block allows a userxr
pre-solution operations. Thus the user may specify the network
(evaluation of nonlinear network elements, coefficients and
boundary values) prior to entering the network solutiocn phase.

An END (memonic code) card is required.

Variables 2 Operations Block (Refer to Section 4.2.7 and
Paragraph 4.2.7.4)

{Col) 8 12

' BCD 3VARIABLES 2

Comment: The VARIABLES 2 operations block allows the user to
perform post-solution operations. That is the solved network may
be examined for quantities such as nodal heat flow, compare
calculated values with test data, etc.

An END (mnemonic code) card is required.

bty
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{1 Output Calls Operations Block (Refer to Section 4.2.7 and
Paragraph 4.2.7.5)

(Col) 8§ 12
BCD 3@UTPUT CALLS

Comment: The @UTPUT CALLS operations block allows a user to call
upon any desired subroutine with its contents printed in the
output interval. Several subroutines for printing output and
plotting are available. ‘

An END (mnemonic code) card is required.

(11) End of Data (Refer to Paragraph 4.2.7)
{Col) 8 12
BCD 3END @F DATA

Comment: Input blocks (1) —(10) above must be terminated by the
END ¢F DATA card.

(12) Parameter Runs (Refer to Paragraph 4.2.8)
(Col) 8 12

BCD 3INITTAL PARAMETERS3
or BCD 3FINAL PARAMETERS

Comment: FParametric analysis which does not involve network or
operation changes may be performed on the same computer run.
Only data values such as output page heading, temperatures,
capacitances, conductances, arrays and constants may be changed.

The parameter run decks are inserted in the problem data deck
immediately preceding the BCD 3END @F DATA card.

{(13) Store and Recall Problem Options (Refer to Paragraph 4.2.9)

Comment: The store and recall capacity allows an indefinite
time lapse between parametric analysis; the store subroutine
call may be used as many times as desired. The recall is
activated by a sinpgle card that replaces the blank card (refer
to Appendix E} that precedes the problem data deck and must be
followed by initial parameter and block data change cards
exactly as shown for parameter runs, including the first BCD 3
parameter and End Cards and the BCD 3END @F DATA card.

4.2.1 Title Block

The first card of a problem data deck is the title block header card.
It conveys information to the program as to rhe type of problem,
which data blocks to follow and how they should be processed. The
three options presently available are:

(Col) 8 12

BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAL LPCS

g:;’ i;# <
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The GENERAL indicates that a non-network problem follows and there-
fore no node or conductor data is present. The THERMAL cards
indicate that a conductor-capacitor (CG) network description
follows and that either a short (SPCS) or long (LPCS) pseudo-
compute sequence should be constructed. The title block header
card may be followed by as many BUD cards as desired. However,
the first twenty words (six characters each) are retained by the
program and used as a page heading by the user designated output
routines, The block must De terminated by an END card and is then
followed by node data for a CG network problem or constants data
for a non-network problem,

4.2.2

£.2.2.1

Node Data Block

Definition and Designation

There are three types of nodes, diffusion, arithmetic and boundary.
All nodes are renumbered sequentially (from one on) in the group
order received. The user input number is termed the actual number,
while the program assigned number is termed the relative node number,
This relative numbering system allows sequential packing of the
data and does not require a sequential numbering system om the part’
of the program user. It iIs worth noting that the pseudo compute
sequence is based on the relative numbering system: this means

that the computational sequence of nodes is identical with their
group input sequence. If a user desires to reorder the computa-
tions in order to aid boundary propagation, it is necessary to
reorder only the nodal input data.

The user may intermix the three types of nodes; the SINDA pre-
processor sorts the nodes into the three basic groups in order to
conserve core space,

Diffusion Nodes

Diffusion nodes are those nodes with a positive capacitance
and thus store energy. In these nodes, temperatures are calculated
by using a finite difference representation of the parabolic
differential equation. A diffusion node causes three core loca-
tions to be reserved, one each for temperature, capacitance, and a
source. : -

Arithmetic Nodes - : oo R

Arithmetic nodes have no capacitance and are designated by a
negative capacitance value. Temperatures of these nodes are
calculated by a finite difference representation of Poisson's
partial differential equation. This is a steady state calculation

that always utilizes the latest diffusion node values available.
Arithemtic nodes reserve only temperature and source locations.

Boundary Nodes

Boundary nodes are designated by a minus sign on the node

number; these nodes reflect mathematical boundaries not necessarily

the physical boundary. Boundary temperatures are not changed by
the network solution subroutines, but may be modified as desired by
the user. A boundary node receives only a temperature location,

23<
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4.2.2.2 Mnemonic Codes for Node DBata

Several mnemonic codes are available including the generation and/or
evaluation of nonlinear network elements; under node data,
capacitance is the network element.

Standard Input for a Node (Thiee Blank Mnemonic dode)

Kode data input with the three blank mnemonic code always
consists of three values; the integer node number followed by
- the floating point initial temperature and capacitance values. A
negative capacitance value is used to designate an arithmetic node,
while a pegative node number designates a boundary node.  Although
the capacitance value of a boundary node is meanipgless, it must
be included in order to maintain the triplet formed.

(Col) 8 12

N#, Ti,C :

4 ,70.,1.3 {example 1)
5 ,70.,-1.0 (example 2)
-6,70.,1.0 {example 3)

where, Nif represents the node number (always an integer)
Ti represents the initial temperature
C represents the nodal capacitance

The example 1 indicates a diffusion node number 4 with a tempera-
ture of 70. degrees and capacitance of 1.3; example 2 indicates
an arithmetic node 5 with a temperature of 70. degrees and a
capacitance of -1, (any negative number could have been used);
example 3 represents a boundary node 6 with an arbitrary
capacitance of 1.0.

CAL Option
This option allows the SINDA user to input the nodal

capacitance as a composite; the capacitance C is calculated as
X times Y times Z times W.

(Coel) 8 12

CAL N#, Ti, X, Y, Z,¥ ,
CAL 10,80.,1.,2.,3..4. (example)

where, N# is the node number
Ti is the initial temperature
X,¥,Z, & W are factors

The example shows node 10 with a temperature of 80. degrees and a
capacitance of 24, (1. x 2. x 3. x 4.).

2a<
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GEN Option

The GEN option allows the user to generate a sequence
cof nodes. ' :

(Col) 8 12

GEN N#, #N, IN, Ti ,C
GEN 6 , 3, 2, 75.,10,

where, N4 is the starting node number {(integer)
#N is the number of nodes to be generated (integer)
IN is the ncde generstion Iincrement (integer)

The example given generates a sequence of 3 nodes 6, 8, and 10 zll
at /5. degrees and a capacitance of 10, As a note of interest,
the user may input the capacitance value as the X,Y,Z and W
composite shown for the CAL Option.

SIV Option {Identical to the CINDA~3G CGS which is SINDA acceptable)

The SEIV option allows the user to spécify a temperature
varylng capacitance.

{(Col) 8 12

SIV N#, Ti, A, F
SIV S ,80.,A1,2.4 {example 1)
SIv 5 ,80.,A1,K7 {example 2)

where, A represents the array address of a doublet array
to be linearly interpolated with the node
temperature as the independent wvariable.

F represents a multiplying factor for the capacitance;
it may be a literal (actual value as shown in ‘
example 1) or the address of a constant's location
containing the actual value (example 2).

SIM Option

This is a combination of the GEN and SIV pptions; notation
and description follows directly from the previous presentation.

(Col) 8§ 12

STM N#,N#,IN, Ti, A,F
sIM 3, 2, 5,80.,A1,4.2 {example)

The example given will generate nodes 3 and 8 (both at 80. degrees)
" and with a linearly interpolated temperature varying capacitance
which is multiplied by 4.2 . Capacitance value is calculated as
density, p, times specific heat, Cp, times volume, V, C = pVCp.

If both p and C, are temperature varying, the user must reference
an array of p*Cp versus T with the multiplication factor being V.
<
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DIV Option (Identical to the CINDA-3G CGD which is SINDA acceptable)

The DIV opticn allows the user to calculate the temperature
varying capacitance of a node consisting of two dissimilar

materials. It can be thought of as two SIV calls with the result
added to the nodal capacitance.

{Col) 8 12

DIV N#, Ti, Al, Fl, A2, F2

DIV 5 ,80.,A14,2.4,A15,5.3 ~ {example 1)
DIv 5 ,80.,A14,2.4,1.0,5.3 {example 2)
DIV 5 ,80.,1.0, K3,A15, K4 (example 3)

Example 1 shows both capacitances as temperature varying; examples 2
and 3 show several ways of inputting when only one of the
capacitances 1is time varying. Note that the constant capacitance

is calculated in example 2 as 1.0 x 5.3 and in example 3 as

1.0 x wvalue in K3.

DIM Option

The DIM option is a combination of the GEN and DIV options and
its operation follows the description of the GEN and DIV options.

{(Col) 8 12

DIM N#,#N,IN, Ti, Al, F1, A2, F2
biM 4 ,3 ,2 ,80.,414,4.2,A17,K36 (example)

The example generates nodes 4, 6 and 8, all at 80. degrees and with
& composite capacitance. of 4.2 times the value interpolated from
Al4 added to the product of K36 times the value interpolated from
. Al?i

SPV, SPM, DPV and DFM Options

These options are identical to the options, SIV , SIM s, DIV , and
DIM respectively, with the exception that the arrays referenced con-
tain polynomial coefficients for evaluation of the temperature
varying capacitance.

(Col) 8 12

SPV W#, Ti, A, ¥

SPM N#, #N,IN, A, F

DPV N#, Ti,A1,F1,A2,F2-

DPM N#, #N,IN,Al,F1,A2,¥2

SPV 5 ,80.,A4,7.6 (example)

The example ig for the SPV option; node 5 is at 80. degrees and the

capacitance is evaluated from the polynomial coefficients in array 4,

the temperature of node 5 and multiplied by 7.6. If array 4 had the
1 i .

fo¥ owing input, ;?(;<:
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4,2.3,0,8,.006,1,2E-5,END
capacitance C5 would be calculated as:

C5 = 7.6%(2,34-0.8%T5+0,006%T52+1 . 2E-5*T53)

The largest order of the polynomial that the program can accommodate
is estimated to be eight.

BIV Option

The BIV option allows the user to specify a bivariate
capacitance of a node. The nodal temperature is the X independent
variable and time is the Y independent variable. Time &8 used here
is the mean time for the iteratilon and 1s obtained intemmally with
TIMEM as the control constant which will be discussed in a later
section called Constants Data Block.

(Col) 8 12
BIV N#,Ti,A,F (Refer to page A.4-12 for form of A)

Example of a Node Data Block

A node data block utilizing the preceding mnemonic options is
listed below as an example, which does not correspond to a particular
problem, but merely illustrates the data input format. It should be
noted that the types of nodes may be intermixed (diffusion, arithmetic
and boundary)} and that two sets of mmemonic cards may be on the sane
card. Caution: the data for a node must be on a single input card.

(Col) 8 12

BCD 3N@DE DATA
1,80.,1.2,2,80.,1.3

CAL 3,80.,1.,2.,3.,4.

GIN 4,2,1,80.,2.7

GEN 6,2,1,80.,-1.0

GEN -8,2,1,-460.,1.0

SIV 10,80.,A1,4.63,11,80.,A1,2.5

sIM 12,2,1,80.,A1,3.25

one " node

two " nodes
" arithmetiec "
" boundary nodes
two single material nodes

D1V 14,80.,A1,2.31,A2,K5 one double " node
DIM 15,2,1,80. ,A1,K4,A2,2.8 tvo ", " nodes
SPV 17,80.,A3,1.8 one single " node
SPM 18,3,1,80.,A3,2.3 three " " nodes
DPVY 21,80.,A3,1.4,A4,1.8 one double " node
DPM 23,2,180.,A3,0.4,44,2.9 two " " nodes

-{»mmmmmmmmmmmm_m

BIV 25,80.,A5,4.76 bivariate capacitance

END

4-10
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Optional Source Data Block

befinition

Optional means that if there are no data for the source data block

" then the block header card and the END (mnemonic code) need not be

included in the data deck, As in the node data block, the user
input number is the actual number and the program assigned number
is the relative source number, Within the optional source data
block, the source may be a constant, a function of time, a function
of temperature, or a function of both time and temperature. It
should be noted that a source may not be impressed on a boundary
node, '

Mnemonic Codes for Source Data

Several mnemonic codes are avalleble including the generation of
time and temperature varying sources,

Standard Input for a Source {Three Blank Mnemonic Code)

Source data input with the three-blank mnemonic code consists
of the node number and a constant value which may be either a user
constant or a literal.,

{Col) 8 12

N#, @
3,2.3 (example 1)
5, K2 (example 2)

where, Nif represents the node number (always an integer)
Q represents either a user constant or a literal
(a literal in example 1 and a user constant in

example 2)

GEN Option

The GEN option allows the user to impress the same heat
source on a number of equally incremented nodes,

(Col} g 12

GEN N#, #N, IN, Q
GEN 7, 3, 2, 4.3 (example 1)
GEN 7, 3,2, K2 (example 2)

where, N# is the starting node number
fN-is the number of nodes
IN is the node generation increment

The examples given will generate a sequence of three nodes, 7, 9,
and 11 all with an impressed source of 4.3 (example 1) or with an
actual value in constants location K2 (example 2}.

28<
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SIV Opticn

The SIV option allows the user to specify a temperature
varying source,

(Col) 8 12

SIV N#, A, F
SIV 9, A2, 5.3 (example 1)
SIV 9, A2, K3 (example 2)

where, A represents the array address of a doublet array
to be linearly interpolated with the node tempera-
ture as the independent variable.

F represents a wultiplying factor for the source; F
may be a literal (actual value of 5.3 as shown in
example 1) or the address of a constants location
K3 containing the actual value (example 2).

SIT Option
The SIT option allows the user to specify a time varying source.

{Col) 8 1z

SIT Nf#, A, F
SIT ¢, A2, 5.3 _ (example 1)
SIT 9, A2, K3 (example 2)

where, A represents the array address of a doublet array
to be linearly interpolated with time as the
independent variable (TIMEM).
F represents a multiplying factor for the source;
it may be a literal (actual value of 5.3 as shown
in example 1) or as the address of a constants
location K3 containing the actual value {example 2).

DIT Option

The DIT options allow the user to specify two time varying
sources that are a function of time. That is the total heat into
node 1 is represented as,

Qi(t) = klfl(t) + szz(t)
where, kl'and k2 are constants
fl(t') and fz(t) are functions of time (TIMEM).

(Col) 8 12
DIT N#, Al, K1, A2, K2

DIT 6, A3, K7, A4, K3 (example 1)
DIT 5, 2.4, K6, A3, K7 (example 2)
DIT 5, 2.4, 6.2, A3, K7 {example 3)
DIT 6, 2.4, 6.2, A3, 3.7 (example 4)

4-12 Q<
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where, Al and A2 are arrays (Al and A2 may be
literals but not simultanecusly).
Kl and K2 may be user comstants or literals.

Example 1 means that the heat into node 6 is the sum of the inter-
polated value of array three times the actual value in constants
address K7 plus the interpoclated value of array four times the actual
value in constants location K3. Example 2 shows array Al to be a
literal, 2.4 whereas both Al and K1 are literals in example 3. In
example 4, Al, K1, and K2 are literals.

DTV Option

The DIV option allows a user to specify a heat source that is
both time and temperature dependent. The heat into node i is,

Q, = k £, () + k£, (T)

where, k, and k, are constants
fl(t} is a function of time (TIMEM).

fz(T) is a function with temperature as a variable'
{Col) g8 12

DTV N#, Al, K1, A2, K2

DTV 7, A3, K7, A4, K3 {example 1)
DIV 6, 2. 4 K6, A3, X7 (example 2)
DIV 6, 2.4, 6. 2 A3 K7 (example 3)
DTV €&, 2. 4 2 A3, 3.7 (example 4)

where, Al and A2 are arrays (Al and A2 may be
literals but not simultaneously).
K1 and K2 may be user constants or literals,

Example 1 means that the heat into node 7 is the sum of the inter-
pelated value of array three times the actual value in constants
address K7 plus the interpolated value of array four times the
actual value in constants location K3. Example 2 shows array Al
to 6 literal with a value of 2.4. Example 3 shows both Al and K1
to be literals and in example 4, Al, K1, and K3 to be literals.

Conductor Data Block

Definition

Two basic types of conductors may be used, regular or radiation;
elther may utilize temperature varying properties in calculating the
conductance value. It should be noted that the regular conductor

is associated with the linear temperature difference, T; ~ Ty; as

a result the regular conductor input and output has the dimen51ons
of a conductor. On the other hand, the radiation conductor is

413 30<
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inputted as objj of the radiation term cbij(Ti“—IH“)

where, o 1s the Stefan—Boltzmann constant (.1714 x 10-8 Btu/hr FL2°RY)
by: is a radiation coefficient that includes shape factor and
properties

,

The radiation conductor printout is ob,,
i

4.2.4.2 Vnemonic Codes

The mnemonic codes discussed under node data are available under
conductor data with slightly revised meanings.

Blank Mnemconic Code (Standard Conductor Input})

When utilizing the blank mmemonic code a regular conductor
consists of the integer conductor number followed by two integer
adjoining node numbers and the floating point conductance value.
If more than cne conductor has the same constant value, these
conductors may share the same conductor number and value. This
is accomplished by placing two or more pairs of integer adjoining
node numbers between the conductor number and the value.

(Col) 8 12

G#,NA,NB,G
1,1.2 ,2.3 (example 1)
2 ,2 3, 3,4, 4, 5,7.6 (example 2)
-3,4 ,9 ,1.8 E-10 (example 3)
4,~5,6,4.3 {example 4)
wvhere, G# stands for the integer conductor number

NA and NB are adjoining node numbers

G is the conductor value (for linear temperature difference)
and represents the radiation coefficient for fourth
power temperature difference.

Example 1 is a regular conductor number 1, between nodes 1 and 2
with a value of 2.3. Example 2 demonstrates the use of multiple
connections and can be used only for constant conductors; node
number 2 has a value of 7.6 and is used between nodes 2 & 3, 3 & 4,
and 4 & 5. Example 3 shows a radiation ccefficient number 3
between nodes 4 & 9 with a value of 1.8E-10. Example 4 illustrates
the use of a one-way conductor (refer to the GEN option below for
details).

CAL Cption

The CAL option for the conductor data differs from the node
data in that the conductor value is calculated as X times Y times Z
divided by ¥. VWhen using the X,Y,Z, & W input under the CAL option
no addresses are allowed; all values must be floating point numbers.

4-14 I & K=
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(Col) 8 12

CAL G#,NA,NB, X, Y, Z,W :
CAL 4 , 5, 6,1.,2.,3.,4. {example)

The example conductor 4 between nodes 5 & 6 receives the value of 1.5.

GER COption

The GEN option allows the user to generate a sequence of conductors
and the increment values may be zero or negative. Inputs X,Y,Z2,¥W under the
CAL option may also be used with the GEN option. An additional feature of
the program is the one way conductoer which allows its effect (value) to be '
included in the calculation procedure of one adjoining node but not the other.
One way conduction is indicated by placing a wipus sign on the node number
that does not include the one way conductor on its calculation. One way
conductors may be used with any of the smemonic options.

{Col) 8 12

GEN G#,#G,IG,NA,INA,NB,INB,C

GEK 5, 3, 1, 1, 1,90, ~1,4.7 : {exanple 1)
GEN G#,#G,IG,NA,INA,KB,INB, X, Y, Z,W

GEN -8B, 3, ¢, 1, 1,99, 0,4.0,0.8,1.E-10,1.0 (example 2)
GEN 9 , 3, 0,-32, 1,33, 1,7.8 (example 3)

where, {#G stands for the number of conductors to be generated
IG, INA, & INB valuves are the incremental adjustments
to the conductors, and the adjoining ncdes.

Example 1 is for a regular con&uctor, example 2 for a radiatiom coefficient
and example 3 is for a one way conductor. These examples are equivalent to
the following:

5,1,90,4.7,6,2,89,4.7,7,3,88,4.7 (for example 1)

~-8,1,99,2,99,3,99,3.2E-10 {(for example 2)
9,~32,33,-33,34,-34,35,7.8 (for example 3)

SIV Option {(Jdentical to the CINDA-36 CGS which is SINDA acceptable)

The SIV option fer conductor data allows linear interpolation of a
temperature varying property. the interpolated value is then multiplied
by the factor F to’cbtain the element value. If only one temperature is
to be used for interpolation, the node (with the temperature to be used)
is listed first and the factor F is set negative.

(Col) 8 12
SIV Gf ,NA,NB, A, F

SIv 10 , 8, 9,A1,4.7 (example 1)
SIV -11, 9,10,A7 ,-3.4E-10 . - : {example 2)
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In example 1, conductor 10 is evaluated with the arithmetic mean of tempera-
tures 8 & 9 used as the independent variable in array Al and 4.7 as the
factor. Example 2 illustrates the case of a single temperature (number 9)
used in the interpolation of array 2 and for a radiation coefficient.

SIM Option
The 5T} mnemonic option is a combination of the GEN and SIV options.
(Col) 8 12

s G#,#G,I6,NA,INA,NB,INB, A,F :
s™ 12, 3, 1, 7, 1,15, 2,A4,4.6 {example)

The above example will generate three separate conductors, each of which are
temperature varying and dependent upon the mean of the adjoining temperatures
as follows:

12,7,15,A4,4.6,13,8,17,A4,4.6,14,9,19,44,4.6

if the factor F (4.6) had been negative, the first nodes (7, 8, & 9) would
have been used for the interpolation.

DIV Option (Jdenticol to the CINDA-3G CGD which is SIHDA acceptable)

The DIV option aliows simulation of a conductor consisting of two serial
dissimilar materials, one or both of which may be temperature varying. Two
separate conductance values are computed and then summed as series conductors
(regular conductors) or multiplied for effective conductance (radiation) That
is, if Gl represents the regular conductance of one material and G2 the other,
then the combined conductance (for series conductors is evaluated as:

G o1
combined 1 +_l;
Gl G2

If Gl represents the emissivity €1 of one surface and G2 contains the
emissivity £2 of the second surface, the combined radiation coefficient
is evaluated as:

' = G1#G2 = el * g2 # - & 2
€ ombined G1#*G2 el 62' F (F is a factor between surfaces 1 & 2]

If one of the two materials is not témperature varying, a literal is used in
place of the array address and no interpolation is performed; the conductance
is evaluated as the literal times the F value.
(Col) 8 12

BIV Gf# ,NA,NB,Al, F1,A2 ,F2

D1V 15 ,12,14,Al, 2.3,A2,K7 (example 1)
DIV -16,17,28,A4,2.E-10,A5,1.0 (example 2)

4-16
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In example L for regular conductor 15, temperature 12 is used with array 1
and the factor 2.3 te obtain the Gl value and temperature 14 i1s used with
array 2 and the contents of K7 to obtain the GR value. Example 2 is for
the radiation coefficient 16 with two temperature varying emissivities.

DIM Option

The DIM option is a combination of the GEN and DIV options. Either one or
both of the two dissimilay materials may be temperature varying. The
series conductance and product radilation coefficient calculation follow
the method discussed under the DIV option. '

(Col) 8 12

DIM G#,#G,IG,NA,IKA,NB,INB,Al, Fl, A2,F2
DIM 17, 4, 1, 6, 1,16, 1,A4,16.6,3.4,7.2 (example)

In the example above, for the four regular conductors only one of the
material is temperature varying and the other has a constant value
(G2 = 3.4%7.2),

5PV Option

The SPV option is identical to the SIV option except that a polynomial
solution is performed instead of interpolation. Either the temperature of
the first nodal input or the mean temperature of the adjoining nodes is used
for polynomial evaluation; the former is designated by a negative facror, -F,
and the latter by a positive factor, F.

(Col 8 12

SPV G# ,NA,NB, A,F
SPV 21,32,42,A6,-4.3 (example 1)
SPV 22,33,43,46,3.8 , (example 2)

Example 1 uses the temperature of node 32 for interpolation, whereas in
example 2 the mean temperature of nodes 33 and 43 is used for interpolation.

SPM Option

The SPM option is a combination of the GEN and SPV options. Directions
for its use follow directly from the individual GEN and SPV descriptions.

{Col) 8 12

SPM G#,#G,IG,NA,INA,NB, INB, A,F
SPM 23, 2, 1,18, 1,99, 0,A6,K9 (example)

DPV Option

The DFV option is identical to the DIV option with the exception that
the DPV option uses a polynomial evaluation in lieu of direct interpolation.
Une or both materials may have temperature varying properties.

34< 4-17
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ol) 8 12

DPV G#,NA,NB,Al, F1,A2,F2 :
DPV 25,27,28,46,4.7,A7,2.3 {(example)

the example the conductances for the two materials are evaluated
parately and combined as series conductances or multiplied if radiation.

M Option

e DPM option is a simple combination of the GEN and DPV options. It is
entical to the DIM option except that polynomial evaluation 1s substituted
r linear iInterpolation. ) ' '

ol) 8 12

DPM G#,#G,IG,NA, INA,NB,INB,A1,F1,A2,F2 .

DFM 26, 3, 1,29, 1,30, 1,A7,K4,A6,14.7 (example)
V Option

& BIV mnemonic option allows simulation of a bivariate property. The array
ferenced by the call must be a bivariate array where the X independent
riable is temperature and the Y independent variable is time. The mean
mperature of the adjoining nodes and the mean time (control constant TIMEM)
rough the program constants are used for interpolation. The result is then
ltiplied by the F factor to obtain the conductance value,

variate conductivity 1s generally encountered in superinsulations which are
bject to pressure changes. This often is due to convection effects when a
cuum is being pulled during test or during launch. Although the second
riable may be altitude or pressure, these variables can generally be

lated to time and thus simulated by use of the BIV gption.

ol) g8 12

BIV Gf# ,NA,NB, A,F :
BIV 29,17,42,A9,7.8 ‘ (example)

ogram Idiosyncrasy and Illustration of Conductor Input Options

A single valued conductor with as many adjoining node pairs as desired
y be used, extending several cards if necessary, however. In addition,
e mnemonic options may have more than one set of data on a card, but a
t of data may not be broken between cards.

35
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Various comductor imput options are illustrated below:

(Col)

8 12
- BCD 3CONDUCTPR DATA S
' 1,%,2,1.2,2,2,3,1.7 $ two regular conductors
3,3,4,4,5,5,6,1.5 $ triple placed conductor
b y-7,8-8,9,7,6 $ double place one-way conductor
CAL 5,4,5,1.4,3.7,2.6,8.2 $ calculated conductance
GER 6,3,1,6,1,6,1,4.3 . $ generate three conductors
SIV 9,10,11,A3,4.6 $ variable conductor, single
S 10,2,1,11,1,12,1,A3,2.8 - $ two variable conductors
DIV 12,17,24,A3,4%4.1,A4,7.6 $ varisble conductor, -double
~-16,1,99,1.E-15 $ radiation conductor i
SPV 17,.4,28,A5,13.7 $ variable conductor, single
spM -18,3,1,2,1,99,0,A5,1.4E-14 $ variable radiation conductor
ppv 231,i9,37,A5,4.3,A7,9.2 $ variable conductor, double
DPM 22,4,1,20,138,1,A5,4.3,47,10.6 $ four variable conductors
BIV 29,2%9,43,48,K - $ bivariate conductor
END .

4.2.5

4.2.5.1

4.2.5.2

;
!
.

Constants Data block 5

Constants data are always input as doublets, the constant name or
number followed by its value. They are divided into two types,
control constants and user constants, and may be Intermingled
within the block. S .

User Constants

User constants, which are identified as numbers, are simply data
storage locations which may contain integers, floating point numbers
or up to six character alphanumeriec words. The user must place
data in user constant locations as needed and supply the location
addresses to subroutines as arguments. .

Control Constants ‘
Control constants number forty-three and have alphanumeric names.

Control constant values are communicated through program common ,
to specific subroutines which require them. However, any contrel
constant name desired can be used as a subroutine argument,
Wherever possible, control constant values not specifled are set
to some acceptable value. If a required control constant value

is not specified, an appropriate error message is printed and the
progrem terminated. The user should check the description of sub-
routines being used to determine control constant requirements.

A list of control comstant names and brief description of each

follows. Exact usage is found in the subroutime descriptions.
ARLXCA The maximum arithmetic relaxation change allowed.
ARLXCC The maximum arithmetic relaxation change calculated.
ATMPCA The maximum arithmetic temperature change allowed.
ATMPCC The maximum arithmetic temperature change calculated.

T 36<
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BACKUP If non~zero, the completed time step is erased and repeated.
BALENG User specified system energy balance to be maintained.
CSGFAC Stability criteria multiplication/division factor.

CSGMAX Maximum stability criteria for network. . .
CSGMIN Minimum stability criteria for netowrk.}(c/zG) max and min.
CSGRAL Stability criteria range followed.

CSGRCL Stability criteria range calculated.

DAMPA Arithmetic node damping factor.

DAMPD Diffusion node damping factor.

DRLXCA The maximum diffusicn relaxation change allowed.

DRIXCC The maximum diffusion relaxation change calculated.
DTIMEH Largest time step allowed (maximum).

DTIMEL Input time step for implicit soclutions.

DTIMEL Smallest time step allowed (minimum).

DTIMED Time step used for all transient network problems.
DTMPCA The maximum diffusion temperature change allowed.

DTMPCC The maximum diffusion temperature change calculated.
ENGBAL The calculated energy balance of the system.

LAXFAC Linearization interval for subroutine CINDSM.

LINECT A line counter location for program output.

LO@PCT Program count of iteration loops performed (Integer).
NLG@P User input number of iteration loops desired (Integer).
GPEITR Causes output each interation if set non-zero.

$UTPUT - Time interval for activating @UTPUT CALLS.

PAGECT A page counter location for program output.

TIMEM Mean time for the computatlon interval.

TIMEN New time at the end of the computation interval.

TIMEND Froblem stop time for transient analysis.

TIMEP 0ld time at the start of the computation Interval,

also used as problem start time, may be negative.

ITEST,JTEST,KTEST,LTEST,MTEST

Dummy contrel constants with integer names.

RTEST, STEST, TTEST,UTEST,VIEST

Dummy control constants with non-integer names.

4.2.5,3 Exanple of Constants Data Block

The following is representative of a constants data block.

{Col) &

BCD 3CPNSTANTS DATA .
TIMEND=10.0,9UTPUT=1.0 $CONTRPL CPNSTANTS
1=10,2=3,3=7,4=8 $INTEGERS
5=1.,6=1.E3,7=1.E~3 $FLBATING PHINT
8=TEMP,9=ALPHA . SALPHANUMERIC

END

. SINDA willl accept commas in place of the equal signs (indicated
above} s0 as to remain compatible with CINDA-3G.

4mg0 VO
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Array Data Block

Format

Array data input consists of an array number, a sequential list of
information and termination with an END (data END, not mmemonic).
For example,

(Col) . 12
1,1.6,2.4,3.8,END
The example indicates array 1 with three data values.

Integer Count of Array Values

Numerous subroutines (interpolation, matrix, etc.) require that the
exact number of values in an array be specified as an integer. 1In
order to reduce the number of subroutine arguments and chance of
error, the SINDA preprocessor counts the number of values in an
array and supplies this integer count as the first value in the
array. Subroutines whose array arguments require the array integer
count will list the array argument as A(IC). Subroutines whose array
arguments require the first data value rather tham the integer count
will 1list the array argument as A(DV).

Referring to the example of 4.2.6.1, by addressing Al as a sub-
routine argument the integer count 3 would be the first value
followed by 1.6, 2.4 and 3.8. If the user wanted the 1.6 data
value to be addressed the argument sheuld be Al+l.

Two Types of Alphanumeric Inputs and SPACE Option

One alphanumeric input allows each word to be separated by a comma,
requires each word to start with a letter and does not allow the
use of blanks. The other requires use of the BCD mnemonic cade and
the single integer word count (Col 12). It allows use of letters,
numbers or characters anywhere and retains blanks. The SPACE option

is an easy way for the user to specify a large number of locations

which are initialized by the preprocessor as floating point zeros.
The space option requires the word SPACE followed by the number of
locations to be initialized. It way be used anywhere in an array
and as many times as desired as long as total available core space
is not exceeded. An example of these inputs is presented below.

(Col) 8 12

BCD 3ARRAY DATA

1,1.6,2.4,3.8,END . SFLBATING PPINT NUMBERS
2, TEMP1, TEMP2, END $ALPHANUMERIC
3 . SALPHANUMERIC
BCD 3TEMPERATURE STUDY :
END
4 ,SPACE, 100, END $SPACE @PTI¢NS

S,4.7,2.3,5PACE, 14,8. 6, SPACE, 17 , END
END -
4-21 H8<
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The SINDA preprocessor does a significant amount of data !-{
checking as the data blocks (discussed in the previous paragraphs)
are ;ead, Detected input errors are noted and the card containing -
the error is identified. For example, when ‘the adjoining node pairs
under conductor data are read, an. immediate check is made for - -
these nodes as input under node data. Incorrect constraint names
are also Immediately identified.
Pseuae;Coﬁﬁufe'éequenheﬁx'7‘
After the four (or five) bloe&s have been rea& the preprocessor
then forms the pseudo-compute sequences as described .in Section 3.2.2.

N . - L T L
(SN [ MR ' o M . - [IRTS IR,
R TR Y i SO '.f. i . A Y

Qperations Blocks ' P T T

- ., " h o b ol ST
x';J,! L L '5‘ I

st bon aw.thand
Aside from the title block there are elther two cor five data
blocks depending upon whether the problem is GENERAL or THERMAL
respectively. 1In either case, there are four operations blocks
entitled EXECUTI@N, . VARIABLES 1, VARIABLES 2 and $UTPUT CALLS,
The operations or instructions called for im these blocks determine
the program control. They are preprocessed by SINDA and passed on
to the system F@RTRAN compiler as four separate subroutines entitled
EXECTIN, VARBLL, VARBL2 and @UTCAL respectively. .When the FARTRAN -
compilation is successfully completed, control is passed to the
EXECTIN subroutine which sequentially performs the operations in. the
same input order as specified by the user in the EXECUTI¢N block.

- None of the operations specified in the other three blocks will

be performed unless called either directly by name in the EXECUTIPN'.
block or internally by a subroutine. i

uuuuu

No operations will be performed unless requested by the user
and no-control constants will be utilized unless called upon by &
subroutine., HNetwork solution subroutines internally call upon VARBLl
VARBL2,:and @UTCAL {see Figure 3~3, page 3-13), and use numerous
control constants. Details on these control constant requirements . |
are presented.in Section A.2. Network solution subroutines require
no arguments .but most others do. These arguments may be addresses
which refer to the location of data or they may be literals; i.e,
the actual data value. All of the input ddta can be’ addressed by
using alphanumeric arguments of the following form. '

LT AT T

TH for the temperature location of nede N
CN for the capacitance location of node N D S
QN for the source location of node N R e
GN for the conductance location of conducter M

KN for the value location of constant N . cor o
AN for the starting location of array N = S
and control constants utilize taeir individual names{ T
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Array Address

VWhen addfessing arrays the user must be careful to address
correctly the integer count or the data value in the array {(refer
to Section 4.2.6). The user may also uniquely address any item in
an array. For instance, the one hundredth value in array ten could
be uniquely addressed as A10+100. This means of addressing i{s only
available for arrays. If a user desired to address the twenty BCD
words for the title block which were retained for output page
headings, he could do so by using the argument i1, cr any woxd
individuvally, by Hn, i = 1,20, '

Dynamic Storage Allocation

Dynamic Storage Allocation is a umique feature of the SINDA
program. Although not carried to the ultimate, all subroutines
which require working space generally obtain it from a common
working array. However, the user must specify information about -
this array to the program. To do so the user must place three
FARTRAN cards at the start of the execution block; for example:

(Col) 1 7
T . DIMENSIgN X(100)
F NDIM = 100
r NTH = 0

The names used must be exactly as shown; in the above example

a working array of 100 locations is formed. If a different

aumber of locations is needed the integer 100 is changed as
desired (both first and second cardsy. If no working locations are
required the cards may be omitted. The progrm user must check the

- writeups of subroutines he is using In order to determine if, when
and how much of a working array is required.

An F in column one indicates to the preprocessor that the card is
FPRTRAN and should be passed on as received. This F. option allows
the user to program FPRTRAN operations directly into the operations
blocks. However, the SINDA arguments listed above are not FORTRAN
compatible with the exception of the control constant names. There-
fore, it is recommended that the program user utilize SINDA sub-
routine calls wherever possible. This is impossible however when
logical operations are required. In this case it is recomuended that
the user place SINDA data values as needed into the available dummy
control constant names allowed for that purpese. Then, FYRTRAN
logical operations can be utilized with the cdummy control constant
names as arguments. FPRTRAN statement numbers for routing purposes
may be placed in columns two through five on any operations cards,
either FPRIRAR or SINDA. '

The data field for node, conductor, constant and array data con-
gists of colums twelve through eighty. However, the data field

40<
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of operations cards ends with column seventy-two. In a mamer of
speaking, a SYINDA subroutine call is a special array and should
terminate with a data END. In order to simplify input for the
user, the operations read subroutines recognize two special
characters; the left and right parenthesis., The left parenthesis
is accepted as a comma, while the right parenthesis is accepted as
a comma followed by a data END. This allows what would have been:

(Col) 12
ADD,K1,K2 ,K3,END

to be more esthetically formatted as:
ADD(F1,K2,K3)
which is almost identical to a FPRTRAN subroutine call.

Execution Operations Block .
An execution eperation block might be as follows:

(Col) 1 8 12
BCD 3EXECUTIPN

F DIMENSION X(25)
F NDIM=25
F NTH=0
F 10 TIMEND=TIMEND+L.0
CNFRWD SEXPLICIT F@RWARD DIFFERENCING
STFSEP(T20,TTEST) S$PLACE T10 INTY DUMMY CC
F IF(TTEST.LE.100.) 6¢ T¢ 10
END

The above indicates a transient thermal problem in which the user
desires to terminate the analysis when the temperature at node 20
exceeds one hundred degrees. The problem must have been fairly
small because only twenty-five working locations were dimensioned
and CNFRWD requires one per node. It does demonstrate the use

of beth SINDA calls and FPRTRAN operations, and that control
constants are referred to by name in either. Another example
might be :

(Col) 1 8 12

BCD 3EXECUTI@N

F DIMENSI@N X(500)
F KDIM=500
F NTH=0 :
CINDSL  $STEADY STATE (USES LPCS)
F TIMEND=10. 0
CNFRWD  $TRANSIENT ANALYSIS (USES SPCS)
END

FEVR. ¢ P=
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In this case the user desires to have a steady state analysis per-
formed on the network followed by a transient analysis utilizing

the steady state answer as initial conditions. However, the two
network selution subroutines that are cited are incompatible .because
CINDSL uses LPCS whereas CNFRWD uses SPCS; as a result the program
would be terminated with an appropriate error message.

There is mo end to the variety of examples that could be generated.
In realiry, the program user is actually programming although it is
somewhat disguised as data input. However, the program does
simplify the task of data logistics and automates overlay, tape
library, and other systems features thereby greatly lessening the
programmimg knowledge which might otherwise be required of a user.

A point well worth considering is proper initialization. All
instructions contained in the other three operations blocks are
performed each iteration or on the output interval. If an operation
being performed in Variables 1 is utilizing and producing non
changing constants, it should be placed in the Executlon block
(prior to the network sclution call) so that it will be performed
only once. Input arrays requiring post-interpolation multriplication
for units conversion only could be prescaled, thereby deleting the
multiplication process. Complex functions of a single independent
variable requiring several interpolation values which are then
combined in a multiplicative fashion can be precalculated versus

the independent variable. Such a precalculated complex function
reduces the amount of work performed during the transient analysis.
A great wany operations of this type can be performed in the
Executiom block prior to call for a transient analysis. Also, output
operatioms to be performed once the transient analysis is completed
may be piaced directly into the Execution block following the
transient network scolution call.

Variables 1 Operations Block

The statement that this program solves nonlinear partial

differential equations of the diffusion type is not quite accurate.
In reality the program only solves linear equations. However,
nonlinearities are evaluated at each computation interval and in
this manmer generally yield acceptable answers to nonlinear problems.
This method is more properly termed quasilinearization. The
Variables 1 operations block allows a point in the computational
sequence at which the user can specify the evaluation of nonlinear
network elements, coefficients and boundary values. The various
mnemonie codes utilized for node and conductor data cause the
construction of a pseudo—compute sequence which is used to evaluate
nonlinesrities, The user must specify any additional functions

or nonlinearities as subroutine calls in Variables 1 in ovrder to
completely define the network prior to entering the network seolution
phase.

42<
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Prior to inclusion of the various mmemonic codes, tha Varisbles 1
operations block primarily consisted of linear interpolation
subroutine calls input by the user for the evaluation of temperature
varying properties. While these linear interpolation calls are
automated through use of the mmemonic codes, it is up to the
program user to specify any required trivariate interpolations or
other nonstandard functional evaluations necessary. Just prior

to performing the Variables 1 operations, all network solution
subroutines zero out all source locatioms. Therefore, the user is
required to specify constant as well as variable or noniinear
impressed sources in this block 1f not specified in source data.
block. A Variables 1 operations block could be as follows:

(Col) 1 8 12
BCD 3VARTABLES 1
. STFSEP(10.0,Q17) SCHNSTANT IMPRESSED S@URCE
D1DEGL(TIMEM, A8,0Q19) $TIME VARYING S@URCE
D2D1WM(T18, TIMEM,A19,7.63,618)  $BIVARIATE FUNCTI@N
¥ TTEST=11.6 .
F IF (TIMEN.GT.10.) TTEST=0.0
STFSEP (TTEST,Q27) SVARTABLE S@URCE
END

The first call above places a constant heating rate of 10.0 into the
source location of node 17. The second call causes a iinear inter-
polation to be performed on array 8 using mean time as the indepen-
dent variable to obtain a time varying heating rate for node 19.

The third call uses mean time and the temperature at node 18 as
independent variables to perform a bivariate interpolation. The
Interpolated answer is then multiplied by 7.63 and placed as the
conductance value of conductor 18. The next two cards are F@RTRAN
and allow a value of 11.6 to be placed into control constant TTEST
until TIMEN exceeds 10.00 after which a value of 0.0 is placed

into TTEST. This amounts to a single step in a "stair-case"
function. The last card places the value from TTEST into the
source location for node 27. Another sample Variables 1 block might
look as follows: '

(Col) 1 8 12

BCD 3VARIABLES 1 .
BLDARY (A12+1,T1,T7,T3,T4) SCENSTRUCT VECT@R
DI1DEG1(T7,A19,A1342) SINTERPELATION
IRRADE(A7,A13,A10,412) - $IR RADI@SITY EXPLICIT
BRKARY (A12+41,Q1,0Q7,Q3,0Q4) $DISTRIBUTE Q RATES
DI1DIWM(TIMEM,A9,0.35,TTEST) SINTERPGLATE
ADD(TTEST,Q1,Q1) $ADD TWP RATES

END

The first call above causes the construction of an array of four
temperature values necessary as input to an Infrared radiosity
subroutine {third card). The second call causes the linear

S
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interpolation of a temperature varying property from array 19 to be
placed into array 13+2 which is the second array argument for the

-radiosity eall, This second argument must be an array of surface

emissivities for the surfaces under consideration; therefore array
19 must be an array of temperature varying emissivity. The BRKARY
call takes data values from array 12 + 1, 2, 3 and 4 and places
them into the csource locations for nodes 1, 7, 3 and 4 respectively.
The fifch call performs linear interpolation on array 9 using TIMEM
as the independent variable,; multiplies the result by 0.35 and
places it in coutrol constant TTEST. This wmight be a time varying
solar heating rate where 0.35 is the solar absorptivity. The ADD .
call adds this rate to what is already contained in the source
Yocation for node 1. Each node has one and only one source loca-
tion. If a user desires to impress more than one heating rate on a
node, he must sum the rates and supply the value to the single
source location available per node.

The Variables 1 operations bliock is the logical point in the network
computational sequence for the calculation of impressed scurces
whether they are due to internal dissipation of powered components,
radiation depositation, aerodynamic heating or orbital heating., If
a desired subroutine is not available, the user may always add his
ovn; data communication is obtained through subroutine arguments

2s in any other subroutine.

Variables 2 Cperations Block

In regards to the network solution, the Variables 1 operations may
be thought of as pre-solution operations and Variables 2 operations
as post-solution operations. In Variables 1 the network was com-
pletely defined with respect to nonlinear elements and boundary
conditions. Variables 2 allows the user to look at the just solved
network. He may weter and integrate flow rates, make corrections
in order to account for material phase changes or compavre just
calculated answers with test data in order to derive empirical
relationships. A simple Variables 2 operations block might be as
follows: ' :

(Col) 8§ 12

BCD 3VARIABLES

QMETER(TL,T2,G1,K1) $METER HEAT FL@W
QINTEG(K1,DTIMEU,K2) $INTEGRATE HEAT FL@W
RDTNQS(T5,T1,G8,K3) S$METER BADTATIGN FLOW
QIRTEG(X3,DPTIMEU,K4) $INTEGRATE RADIANT FL@W
ADD (K2 ,K4,K5)

END

The first call measures the heat flow from node one to node two
through regular conductor one and stores the result in constant
location one. The second call performs a simple integratiom with
respect to time and sums the result into constants location two.
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The third call measures heat flow through a radiation conductor which
iz then integrated by the fourth call. The sum of the two integra-—
tions is obtained by the fifth call. Another Variables 2 operations
block might be as follows:

(Col) 8 12:

BCD 3VARIABLES 2
ABLATS (A1,1.76,K8,A7,T15,C15) SABLATIVE @M NUDE 15
END

Phase change subroutines such as the above are unique in that they
perform automatic corrector operations. Node 15 has been solved by
the network solution subroutine as though no ablative existed. The
ABLATS subroutine then corrects the temperature node 15 to account
for the ablative material. It does this by calculating the average
heating rate to ncde 15 over the time step just performed and utilizes
it as an inner surface boundary condition for the internally con—
structed 1-D network representation of the ablative material. The
correctness of this analytical approach can be rigorously substan-
tiated for use with explicit network solutien subreoutines. However,
vhen used with large: time step implicit methods it yields a con-
trolled instability and the results may be questionable. It is up
to the uszer to determine the solution accuracy by whatever means
available, A more complicated Variables 2 operations block could be
as follows:

(Col) 1 5 8 12

BCD 3VARIABLES 2
D1DEG1 {TIMEN,A10,K8) $GET TEST TEMPERATURE
SUB(T8,K8, TTEST) SPBTAIN TEMP DIFFERENCE
F IF (TTEST.LE.2.0) G@ T¢ 10
MLTPLY (G7,0.99,G7) . $REDUCE C@NDUCTANCE
5 STFSEP (-1.0, BACKUP) $SET BACKUP N@N-ZERP
F ¢ TP 20
F 10 IF(TTEST.GE.-2.0) GO TO 15
MLTPLY(G7,1.01,G7) $INCREASE fONDUCTANCE
F GPp TP 5
15 QMETER(T8,T15,K9)
QINTEG (K9 ,DTIMEU,K10)
'F 20 C@NTINUE
END

This corresponds to a portion of a network as follows:

.
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Array 10 is a time—Lewmperature test history of node 8 and node 15

is a known boundary reference temperature. The problem is to calculate
the value of conductor seven which will yield a calculated temperature
at node eight that is within 42.0 degrees of the test history. The
above Variables 2 operations will attempt to modify conductor seven

so that it will meet the constraints on temperature eight. It is quite
"brute~force'" and unsophisticated. However, the corrector operations
are at the discretion of the user. If the tolerances were too severe
or the correction operations too strong the correcticn for one tolerance
could lead to dissatisfaction of the other and an impasse result. If
the reference temperature at node 15 were incorrect, possibly mo value
of conductor seven would satisfy the constraints. The end rvesult of
such a study would be to produce a plot of conductance seven Versus
time which could be used to derive an empirical telationship with
other parameters. Too wide a tolerance would cause the plot to
resemble a stair-case function. Please note that either condition
being unsatisfied causes control constant BACKUP to be set non-zero

and the iteration to be redone with the corrected conductor seven
value. Only when all criteria are met are the metering and integra-
tion operations performed. )

Output Calls Operations Bleck

This operations block could have been entitled Variables 3 but
Qutput Calls seemed more apprepriate. In it a uvser wmay call vpon
any desired subroutine. However, its contents are pexformed on the
output interval se it is only logical that it would primarily
contain instructions for outputing information. There is a variety
of output subroutines offering the user several format optioas. A
very simple CQutput Calls block would be as follows:

{Col) 8 12
BCD 38UTPUT CALLS

PRNTHP
EFD

. The above call will output certain time control informtion and the

temperature of every node in the network umder consideration. The
node temperatures will correspond to the relative node numbers set
up by the preprocessor, not the actual node numbers set by the user.
The preprocessor lists out all of the input data. Iemediately aiter
the input node data a dictionary of relative node numbers versus
actual node numbers is listed. By utilizing it a user cam correlate
the relative node temperatures with his actual numbers.

In addition to the warious subroutines for primting output, there
are several plotting subroutines available. However, the pleotting
subroutines require that the information to be plotted exist as
arrays. Im order to plot transient temperatures versus time it is
necessary for the user to store the information umtil the transient
is completed and then perform plotting. The operariomns to do this
could be as follows: .

4“‘29. - 46(



Vi svsyenas

REQONDD OLATH, CALIFOARIA

(Col) 8 12
BCD 3@UTPUT CALLS
PRNTMP
ADDFIX(1,K10,K10)
STPARY {K10,A1, TIMEM) ,
STPARY (K10,A2,T1)
END

The Output Calls will be performed at problem start time and on

the output interval until problem stop time is reached. A 100
minute transient with an output interval of 5 minutes would cause
the Output Calls operations to be performed 21 times. With constant
ten initially at zero, the ADDFIX call will add an integer one to it
each time it is performed. The STPARY call causes the third argu-
ments (TIMEM and T1) to be stored into the K10th location of array
one and two respectively. Therefore, Al and A? must contain at
least as many data locations as required to accommodate the STPARY
operations. When the transient amalysis is completed, Al and A2
contain array data suitable for plotting or printing in a columnar
format. Such operations are ecasily called for in the Execution
Operations Block immediately following the network solution call.

The above data and operations blocks comstitute a problem data
deck which must be terminated by the following card:

(Col) 8 12
BCD 3END ¢F DATA
£.2.8 Parameter Runs

Parametric analysis which does not involve network or operations
changes to the original problem may be performed on the same com—
puter run. Only data values such as output page heading, tempera-
tures, capacitances, conductance, constants and arrays may be
changed. The data change blocks must all be specified whether changes
occur in the block or not and the data input is identical to the
Preceding discussion with the exception of conductors. When
specifying new conductances the adjoining node information is delered;
only the conductor number and value are required.

Two paramtric run options are available, INITIAL and/or FINAL,
and they may be used several times within the problem data deck,
The problem data deck as initially input is referred to as the
original problem. Any and all INITIAL parameter runs refer to it
exactly as it was input. The FINAL parameter run refers to the
just completed problem exactly as terminated. VWhen two INITIAL
parameter runs are attached to the end of a problem data deck, they
both refer to the original problem at start time. However, when
two FINAL parameter runs are attached to the eand of a problem dara
deck, the first refers to the original as terminated, and the

qd<
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second refers to the first FINAL parameter run as completed. The
SINDA control cards necessary to specify a parameter run is as
foliows:

(Col) 8 12

BCD 3INITIAL PARAMETERS
or BCD 3FINAL PARAMETERS

END .

BCD 3N¢DE DATA

END

BCD 3CONDUCTHR DATA

EXD

BCD 3CYNSTANTS DATA

END

BCD 3ARRAY DATA

END

The parameter run decks are inserted in the problem data deck
immediately preceding the BCD 3END $F DATA card. After the BCD
parameter card, the user may insert additional BCD data to replace
the original problem cutput page heading. When changing an array,
the entire new array must be input and be exactly the length of its
original. Parameter runs conserve machine time mainly due to not
having to reform the pseudo—compute sequence. If a user desires,
he may accomplish FINAL parameter runs by calling the network
execution subroutine twice in the EXECUTI®N block and inserting
the necessary calls to mcdify data values between them.

Store and Recall Problem Options

The capability to store complete problems en and recall them
from magnetic tape is a useful feature of SINDA. While the para-
meter run capability is useful for performing parametric analysis in
the same run, the store and recall capability allows an indefinite
time lapse between parametric analysis. In addition, long duration
problems may be broken into several short duration runs. If a
parametric analysis is such that the first portion of the rums are
identical, then the problem can be run for the constant portion,
stored and then recalled as many times as necessary.

The store problem feature is achieved by a user initiated
subroutine call which is as follows: ‘

(Col) 12
STPREP (KX)

where KX refers to a constant location containing an alphanumeric
identification name for the stored problem. The call may be used
as many times as desired but the user must insure that each activa-
tion references a unique name. It is up to the user to insure that
the stored problem tapes have been mounted with the "write" ring in,
are properly positioned and that the computer operator has been
instructed to save the tapes. The user should check Appendix E,
Control Cards and Deck Setup to determine which tapes his problem
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is being stored on and the control cards, if any, for assigning it
within the system.

The recall problem feature is a SINDA preprocessor option which
is activated by the following card;

(Col) 1 13 '
RECALL AAAAAA

where AAAAAA is the alphanumeric identification name of the stored
problem. This single card replaces the blank card preceding the
problem data deck and wust be followed by initial parameter and block
data change cards exactly as shown for parameter runs, including the
first BCD 3 parameter and END cards and also the BCD 3END {#F DATA
card. The stored problem identified will be searched for and brought
into core from the two storage tapes. Any data changes specified
will be performed and then control is passed to the first subroutine
call in the EXECUTIPN block. The user must remember that the recalled
problem contains the STAREP call. The user is again advised to con-
sult Section E for the tape unit deszignations, control card require-
ments and operater 1nstruct10ns ‘necessary for mounting the stored
problem tape. :

Dictionary Printout

Node Data

A dictionary of relative vs. actual node numbers is automatically
printed under BCD 3N@DE DATA BL@CK.

Conductor Data

A dictionary of relative vs. actual conductor numbers is automatically
printed under BCD 3C¢NDUCTPR DATA BL@CK.

Constants Data

A dictionary of relative vs. actual constants numbers printout is
optional under BCD 3C@NSTANTS DATA BLQCK. For a printout, a * in
Col. 80 is used. .

(Col) 8 12 - 80
BCD 3CONSTANTS DATA ' . %

Array Data

A dictionary of actual array number vs. FPRTRAN addresses printout

is optional under BCD 3ARRAY DATA. )
(Col) 8 12 . , o ' 80
BCD 3ARRAY DATA ) ‘ *
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ERROR MESSAGES

Pue to the variety of subroutines available and the variable
number of arguments which some of them have, no check is made to
determine if 2 subroutine has the correct number of arguments., An
incorrect number of arguments on a subroutine call will generally'
cause job termination immediately after successful compilation,
usually without any error message. If the above occurs, the user
should closely check the number of arguments for his subroutine calls.

Rumerous errcor messages can be output by the preprocessor, These
error messages are listed below and grouped according to various
preprocessor functions. All error messages are preceded by three
asterisks which have been deleted below. Self-explanatory messages
are not enlarged upon; note that all messages are outputted on
one line except 5.1.24.. ’

5.1 Processing Data Blocks

5.1.1 DATA BL@CKS IN IMPR@PER PRDER @¢R ILLEGAL BLOCK DESIGNATI¢N
ENC@GUNTERED

5.1.2 THE PSEUD$ COMPUTE SEQUENCE INDICAT@R MUST BE EITHER SPCS #R
LPCS, AND START IN CALUMN 21

5.1.3 AN IMBEDDED BLANK HAS BEEN ENC@UNTERED IN THE LAST LINE

5.1.4 BLANK CPUNT @F TEN HAS BEEN EXCEEDED

5.1.5 INTEGER FIELD EXCEEDS 10

5.1.6 REAL NUMBER FIELD EXCEEDS 20

5.1.7 ALPHANUMERIC FIELD EXCEEDS 6

5.1.8 C@ND NUMBER, XXXXX, IS THE DUPLICATE @F THE XXXXXTH CNDUCT@R
5.1.9 MULTIPLE DECIMAL PPINTS HAVE BEEN ENC@UNTERED

5.1.10 TWP CPNSECUTIVE CONDUCT@R VALUES HAVE BEEN ENCPUNTERED

-5.1.11 THE N@DE NUMBER, ENTRY XXX, MUST BE AN INTEGER

5.1.12 THE TEMPERATURE VALUE, ENTRY XXX, MUST BE A FLPATING PPINT NUMBER
5.1.13 THE CAPACITANCE VALUE, ENTRY XXX, MUST BE A FLPATING P@INT NUMBER‘
5.1.14 THE NUMBER OF N@DES, ENTRY XXX, MUST BE A PPSITIVE INTEGER

5.1.15 THE N@DE INCREMENT, ENTRY XXX, MUST BE A N@N-ZER$ INTEGER

' 50<
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5.1.16 THE AB@VE CARD HAS XXX ENTRIES, THE WUMBER (F ENTRIES MUST BE A
MULTIPLE ¢F XXX

5.1.17 THE ABPVE CARD HAS XXX ENTRIES, THE NUMBER @¢F ENTRIES MUST BE A
MULTIPLE OF XXX PR XXX

5.1.18 N¢DE NUMBER XXXXX HAS BEEN DEFINED TWICE AT RELATIVE LﬁCATiﬁﬂs
X AND XXXXX

5.1.19 COLUMNS 8,9,10 CGNTAIN THE ILLEGAL CPDE XXX
5.1.20 THE ARRAY SPECIFICATI@N, ENTRY XXX, MUST BEGIN WITH THE LETTER A

5.1.21 THE CYNSTANT SPECIFICATIfN, ENTRY XXX, MUST BE EITHER A FLOATING
PPINT NUMBER @R BEGIN WITH THE LETTER K

5.1.22 THE ARRAY @R CPNSTANT IDENTIFICATIEN XXXX MUST BE A PYSITIVE INTEGER
5,1.23 THE N@DE NUMBER MUST BE GREATER THAN O FPR THIS $PTI@N

5.1.24 BPTH ARRAY SPECIFICATI(NS, ENTRIES XXX AND XXX. ARE FLPATING
PPINT NUMBERS

AT LEAST ¢NE OF THESE MUST IDENTIFY AN ARRAY NUMEER
5.1.25 THE C@NDUCT@R NUMBER, ENTRY XXX, MUST BE AN INTEGER
5.1.26 THE C@NDUCTANCE VALUE, ENTRY XXX, MUST BE A FLPATING PPINT WUMBER
5.1.27 ACTUAL N¢DE NUMBER XXXXX WAS NST SPECIFIED IN THE NYDE DATA BLHCK
5.1.28 THE NUMBER @¢F C@NDUCT@RS, ENTRY XXX, MUST BE A P@SITIVE INTEGER
5.1.29 THE C@NDUCTZR INCREMENT, ENTRY XXX, HUST-BE A NgN-ZERG INTEGER
5.1.30 IHE N¢YDE INCREMENT, ENTRY XXX, MUST BE INTEGER

5.1.31 ENTRY XXX IS ASSUMED T¢ BE A FIXED CPNSTANT HAME, BUT THE NAME
INPUT IS N@T IN THE LIST §F FIXED CPNSTANTS

5.1.32 CPNSTANT NUMBER XXXXX IS THE DUPLICATE ¢F THE XXXXX RELATIVE
CONSTANT

5.1.33 ARRAY NUMBER XXXXX HAS ALREADY BEEN INPUT AS RELATIVE NUMBER XXXXX

5.1.34 TEMPERATURE VARYING CAPACITANCE ENTRY XXXXX IN K@DE DATA SPECIFIES
ARRAY XXXXX WHICH IS N§T IN THE LIST

5.1.35 TEMPERATURE VARYING CAPACITANCE ENTRY XXXXX IN NADE DATA SPECIFIES
CPNSTANT XXXXX WHICH IS NAT IN THE LIST

5.1.36 TEMPERATURE VARYING C@NDUCTANCE ENTRY XXXXX IN CONDUCTPR DATA
SPECIFIES ARRAY XXXXX WHICH IS N@T IN THE LIST
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5.1.37 TEMPERATURE VARYING CONDUCTANCE ENTRY XXXXX IN CONDUCTOR DATA

SPECIFIES CPNSTANT XXXXX WHICH IS N@T IN THE LIST

5.1.3% THE PREGRAM EXPECTED ENTRY XXX ABPVE T¢ BE AN INTEGER ARRAY

NUMBER. A K¢N-INTEGER WAS ENCPUNTERED.

5.2 Forming Pseudo Compute Segquence

5.2.1

RELATIVE N@DE NUMBER (XXX¥X) IS N@T CENNECTED TP ANY $THER N@DE

5.3 Processing Program Blocks

5.3.1

5.3.2

5.3.3
5.3.4
5.3.5
5.3.6

5.3.7

5.3.8

EXECUTIGN BLACEKS IN IMPROPER @RDER @R ILLEGAL BL@CK DESIGNATI@N
ENC@UNTERED

VARIABLE DESIGNAT#R, AAA, N@T DEFINED F@R GENERAL PRGBLEM
Explanation: Some alpha character other than K or A has been

used to reference a data block. In a thermal
problem a designator other than G, K, or A is
assumed to Le refecvencing the nodal block.

MISSING N@DE HUMﬁER, ).9.4.0.44

MISSING CONDUCTSR NUMBER, XXX

MISSING C@NSTANT NUMBER, XXXXX

MISSING ARRAY NUMBER, XXX

FIXED CONSTANT NAME, AAAAA, N¢@T IN LIST.

NUMBER ¢F SUBR@UTIMES REQUESTED EXCEEDS 75.

Explanation: More than 75 unique subroutines have been called.

5.4 Processing Parameter Changes

5.4.1
5.4.2

5.4.3

5.4.4

5.4.5
-5.4.6

5.4.7

N@DE NUMBER, XXXXX, WAS N¢T DEFINED IN THE $RIGINAL PR@BLEM.

. C@NDUCT@R NUMBER, XXXXX, WAS N@T DEFINED IN THE $RIGINAL PR@BLEM.

CPNSTANT NUMBER, XXXXX, WAS N¢T DEFINED IN THE $RIGINAL PRUBLEM,
ARRAY NUMBER, XXXXX, WAS N¢T DEFINED IN THE $RIGINAL PR@BLEM,
CPNSTANTS BLGCK WAS EMPTY IN THE $RIGINAL PREBLEM,

ARRAY BL@CK WAS EMPTY IN THE @$RIGINAL PRABLEM,

THE AB@VE ARRAY IS L¢NGER THAN THE ARRAY DEFINED IN THE
PRIGINAL PR$BLEM .
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. 5.4.8 N@DE @R C¢NDUCT@R DATA 15 N@T ALLPWED IN A GENERAL PRPBLEM

5.5 Terminations Due to Errors (No Preceding Asterisks)

5.5.1 ERRPR TERMINATI@N - LPADING IS SUPPRESSED

5.5.2 THE NUMBER @F ERR@R MESSAGES EXCEEDS 200 - RUN TERMINATED

57
5-4



TERUY sysrems

REDONDCO BEALN, CALIFDRMNIA

6. REFERENCES

1.

6.

Gaski, J. D. and Lewis, D. R.,, "Chrysler Improved Numerical Differencing
Analyzer", TN-AP-66-15, April 30, 1966, Chrysler Corporation Space
Division, New Grleans, Louisiana.

Lewis, D. R,, Gaski, J. D. and Thompson, L. R., "Chrysler Improved
Numerical Differencing Analyzer for 3rd Generation Computers',
TN-AP~67-287, October 20, 1967, Chrysler Corporation Space Division,
New Orleans, Louisiana.

Karplus, W. J., Analog Simulation, Solution of Field Problems,
McGraw-Hill Book Co,, 1958,

ishimoto, T. and Bevars, J. T., “"Method of Evaluating Script F for
Radiant Exchange within an Enclosure', ATAA Journal, Vol. 1, No. 6,
June 1963, pp. 1428-1429,

Bobco, R, P., "Radiation Heat Transfer in Semigray Enclosures with
Specularly and Diffusely Reflecting Surfaces", Journal of Heat
Transfer, Vol. 86, 1964, pp. 123-130.

Clippinger, R. F. and Levin, J. H., "Numerical Analysis", Handbook
of Automation, Computation, and Control, Vol. 1, Edited by Grabbe,
L. M., Ramo, S., Wooldridge, .D.E., pg. 14-84, 1958, John Wiley & Sons.

Crank, J. and Nicholson, P., "A Practical Method for Numerical
Integration of Solutions of Partial Differential Equations of
Heat-Conduction Type, Proc. Cambridge Phil, Soc. 43,50 (1947).

24<

6-1



T sysvERSS

REDOMDD BEACKH, CALIFORMNS

A. SINDA SUBEOUTINES
A.1 Alphabetical Listing

Hame Page Name Page Name Pape Name Page
AABR A.6-11 CLEANV *k DIDIMI  A.4-5 ELEADD A.6-6
ABLATS A.8-5 CLEANS k% DIDIWM A.4-4 ELEDIV A.6-6
ACALC * CMPXDV A.3-10 DID2DA A.4-8 ELEINVY A.6-6
ACSARY A.5-5 CMPXMP A 3-7 DID2WM A.4-8 ELEMUL. A.6-6
ADARIN A.3-9 CMPXSR A.5-7 D1IMD1 A.4-6 ELESUR A.6-6
ADD A3-4 CMPYI A.3-7 D1IMIM A.4-6 ENDMPP A.6-17
ADDALP A.6-9 CNBACK A.2-10 DI1IMWM A.4-6 ENDPLT =~ %% -
"ADDARY A.3-4 CNDUFR A.2-8 DIMDGY A.&-4 EOF A.7-10
ADDFIX A.3-4 CNEXPN A.2-7 pIMDGZ A 49 EAFTV xh
ADDINV A.3-9 CHFAST A.2-6 DIMIDA A.4-4 ERRZZ ek
ALGARD * CNFRDL A.2-5 DIMIMD  A.4-5 EXITG Tk
ALPHAA A.6-9 CNFRWD A.2-5 DIMIWM A.4-5 EXPARY A.5-6
ARCCPS  A.5-5 CNFWBK A.2-9 DIMZDA A.4-9 EXPNTL A.5-6
ARCSIN A.5-5 CNQUIK A.2-12 DIM2MD A.4-9 FILE A.6-17
ARCTAN A.5-5 CNVARB A.2.,11  DIM2WM A.4-9 FIX A.3-10
ARINDV A.3-9 COLMAY A.6-13  DIICYL A.4-10  FLGSET :
ARYADD A.3-4 CHLMIX A.6-14 DIIDAT A 4-5 FLIP A.3-12
ARYDIV A.3-8 COLMLT A.6-12 DIIDIM A.4-5 FLPAT 4.3-10
ARYEXP A4.5-6 COMPAR B-6 DlIMcY A.4-10  FMISG &k
ARYINV A.3-9 coryY K%k D1IMDA A.4-4 FPNT2 ik
ARYMNS A.3-11 COSARY A.5-4 DI1MDI A.4-5 FPRMIT *
ARYMPY A.3-6 CPRINT A.7-3 P12CYL A.4-10  TFULSYM A.6-5
ARYPLS A.3-11 CSCDMP A.2-13 DI2MCY A.4-10  GENALP A.6-4
ARYSTP A.3-13 CSQRI  A.5-7 D12MDA  A.4-8 GENARY A.3-12
ARYSUB A.3-5 CTCALC * D2DEGl A.4-13  GENCHL A.6-4
ASNARY A.5-5 CVQLHT A.4-6 D2DEGZ A.4-13 GENM *k
ASSMBL A.6-12 CVQIWM A.4-6 D2D1WM A.4-13  GENST k%
ATNARY A.5-5 DATE *k D2D2WM A.4-13  GET *k
BABT A.6-11 DALICY A.4-10 D2MXD1 A.4-13  GETICZZ *k
BCALC * DALIMC A.4-10 D2MXD2 A.4-13  GETPR *
BIVLV A.8-4 DAL2CY A.4-10 D2IMXIM A.4-13  GPRINT A.7-3
BKARAD A.3-3 DAIZMC A.4-10 D2ZMX2M A.4-13  GRIDG ok
BLDARY A.3-13 DELTA * D3DEGL A.4-14 GSLYPE A.4-11
" BRKARY A.3-13 DFLAG * D3DIWM A.4-14  HEDCOL  *
BTAB A.6-11 DFPRNT * EFABS A.6-8 IDFNZZ  **
BVSPDA A.4-12 DIAG A.6-5 EFACS A.6-7 IFMZZ *k
BVSPSA A.4-12 DIAGAD A.6-5 EFASN  A.6-7 INITZZ  **
BVIRNI A.4-12 DISAS A.6-12 EFATN A.6-7 . INPUTG  ***
BVTRN2 A.4-12 DIVARY A.3-8 EFCPS  A.6-7 INPUTT  **%
CALL A.6-18 DIVFIX A.3-8 EFEXP A.6-8 INTRFC A.3-10
CDIVI  A.3-10 DIVIDE A.3-8 EFFEMS A.8-9 INVRSE A.6-10
CINCHS A.5-4 DTPRNT * EFFG A.8-2 IRRADE A.8-8
CINDSL A.2-3 DIDEGL A.4-4 EFLOG  A.6-8 IRRADI A.8-8
CINDSM A.2-4 DIDEG2 A.4-8 EFPfW  A.6-8 ITRATE A.4-15
CINDSS A.2-2 DIDGLII A.4-5 EFSIN A.6-7 JACPBI A.6-17
CINSIN A.5-4 DIDIDA A.4-4 EFSQR A.6-8 JPIN A.3-16
CINTAN A.5-4 DIDIIM A.4-5 EFTAN  A.6-7 KADZ %k

0 Plot Pkg.;***Internal

*Internal, STEP Subroutine; **Internal, SC-406



Name

KALFIL
KALPBS
LABELG
LAGRAN
LEGNDG
LGRNDA
LINESG
LIST
LISTIT
LHCZ
LUCE
LEGEAR
LBGT
LAGT AR
LQDVAP
LQSLTR
LSTAPE
LSTSQU
MASS
MATADD
MATRD
MATRIX
MATWRT
MA XDAR
METAZZ
MLTPLG
MLTPLY
M@DES
M@DES G
MPYARY
MPYFIX
MULT
MULTY
MXDRAL
NEWRT4
NEWTRT
NNREAD
N@NLIN
NTABS
NUMB RG
NVECZ
@BICTG
@#NES
PUTQZZ
PUTEZZ
PACKZZ
PAGEG
PFLAG
PLOTMP
PL@TL]
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ALT-T

Name

PLATLZ
PLATX1
PLETX2
PLATX3
PLATXA
PLTND

PLYARY
PLY AWM
PLYEVL
PLYNML
PNCHMA
PNTABL
PPINTG
PYLMLT
PYLSHV

‘PALVAL

PREPRN
PRESS
PRINT
PRINTA
PRINTL
PRNDER
PRNDIF
PRNTMA
PRNTMI
PRNTMP
PSINTR
PSNTWM
PUCH
PUNCHA
PUT
PUTCZZ
PYMLTL
QCALC
QFPRCE
QFPRING
QINTEG
QINTGI
QIPRNT
QMETER
QMIRI

QNPRNT .

RCDUMP
RDTNQS
READ

REDUCE
REFLCT
RELACT
REWIND
RGRIDG
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A.7-10

*
*

MName

RGWMLT
RSETMG
RTPALY
SAVDER
SCALAR
SCALE
SCALZZ
SCCTZZ
SCLDEP
SCLIND
SCRPFA
SEGMTG
SETMNS
SETPLS
SETSMG
SETUP
SETUPG
SCRIDG
SHFTV
SHFTVR
SHIFT
SHUFL
SIGMA
SIMEQN
SINARY
SKPLIN
SLDARD
SLDARY
SLRADE
SLRADI
SMEPAS
SMPINT
SPLIT
SPREAD
SPRESS
SQRPDT
SQRATL
STEP
STFSEP
STFSEQ
STFSQS
STIFF
STNDRD
STPARY
STOREP
STHRMA
SUB
SUBARY
SUBFLX
SUBJEG
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SUMARY
SYMDAD
SYMFRC
SYMFUL
SYMINV
SYMLST
SYMREM
SYMREP
TANARY
TDGT
TES TMP
TITLEG
THFDAY
THPLIN
TPRINT
TRANS
TRNBY1
TRINBV2
TRPZD
TRPZDA
UNDLAG
UNITY
UNPAC
UNSCZZ
UPDMPP
VARCCM
VAECSM
VARGSM
VARCL
VARC2
VARGCM
VARGSM
VARG
VARG2
VECIG
VECSZZ
VECTZZ
WRITE
WRTARY
WRTLYB
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XMPHDZ
YMPDZ
ZERP
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A.2 EXECUTION SUBROUTINES (RETWORK SOLUTION & OUTPUT)

Retwork Solution

Steady State

CINDSS

CINDSL
CINDSM

Transient

CNERWD
CNFRDL

CNFAST
CNEXPN

j

CKDUFR
CNFWBK
CNBACK

CRVARD

CNQUILK

|

OuEEut

CS GDMP
RCDUHMP

Block iteration
Successive point iteration

Modified CINDSL, radiation dominated problem

Explicit forward differencing

Accelérated forward differencing
Explicit exponential prediction

Stable explicit finite differencing
Implicit forward-backward differencing
Implicit backward differeﬁcing

Combination of backward and forward-backward
differencing

Unconditionally stable explicit method

Network criteria and linkage

27

A.2-1
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NETWORK SOLUTION —— STEADY STATE

EXECUTION SUBROUTINE NAME: CINDSS*

PURPOSE:

This subroutine ignores the capacitance values of diffusion rodes to cal-~
culate the network steady state solution. Due to the SPCS requirement,
diffusion nodes are solved by a "block" iterative method. However, if .

all diffusion nodes were specified as arithmetic nodes they would be
calculated by a “successive point" iterative method. The user is required
to specify the maximum number of iterations to be performed in attempting

to reach the steady state solution (control constant NLEGP) and the
relaxation criteria which determines when it has been reached (DRLXCA for
diffusion nodes and/or ARLXCA for arithmetic nodes). The subroutine will
continue to iterate until one of the above criteria is met. 1f the itera-
tion count exceeds NL{@P an appropriate message is printed. Variables 1
and Output Calls are performed at the start and Variables 2 and Cutput Calls
are performed upon completion. If not specified, control constants DAMED
and DAMPA are set at 1.0. They are used as multipliers times the new
temperatures while 1.0 minus their value is used as multipliers times the old
temperatures in order to "weight" the returned answer. This weighting of so
much new and so much old is useful for damping oscillations due to non-— '
linearities. They may also be used to achieve over relaxation.

If a series of steady state solutions at various times are desired it can
be acecomplished by specifying control constants TIMEND and @UTPUT. HUTPUT
will be used both as the output interval and the computation interval. In
this case appropriate calls would have to be made in Variables i to modify
boundary conditions with time.

If desired, the CINDSS call can be followed by a call to one of the transieant
solution subroutines which has the same SPCS requirement. In this manner

the steady state solution becomes the initial conditions for the transient
analysis. However, since CINDSS utilizes control constants TIMEND and
PUTPUT the user must specify their values in the execution block after

the steady state call and prior to the transient analysis call.

RESTRICTIONS:

The SPCS option is required. Diffusion nodes receive a "block" iteration
while arithmetic nodes receive a "successive point" iteration, no accelera-
tion features are utilized. Control constants NLG$P and DRLXCA and/or
ARLXCA must be specified. Successive steady state solutions can be obtained
by specifying control constants TIMEND and $UTPUT. Qther control constants
which are activated or used are: LOPPCT, DRLXCC and/or ARLXCC, TIMEN, TIMEM,
TIMEQ, DAMPD, DAMPA, DTIMEU, LINECT and PAGECT. Control constant GPEITR is
checked for output each iteration.

CALLING SEQUENCE: CINDSS

*This subroutine utilizes one dynamic storage core location for each
diffusion node.

a8<
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HWETWORK SOLUTION ~— STEADY STATE

EXECUTION SUBROUTINE NAME: CINDSL*

PURPOSE:

This subroutine ignores the capacirance values of diffusion nodes to
calculate the network steady state solution. Since this subroutine has the
LPCS requirement, both diffusion and arithmetic nodes receive a "successive
point" iteration. In addition, om every third iteration,a linear extra-
polation is performed on the error function plot of each node in an attempt
to accelerate convergence. The user is required to specify the maximum
number of iterations to be performed in attempting to reach the steady state
solution (econtrol constant NLEPP) and the relaxation criteria which
determines when it has been reached (DRLXCA for diffusion nodes and/or ARLXCA
for arithmetic nodes). The subroutine will continue to iterate until one of
the above criteria is met. If the iteration count exceeds NL@P an appro-
priate message is printed. Variables 1 and Qutput Calls are performed at
the start and Variables 2 and Qutput Calls are performed upon completion.

If not specified, control constants DAMPD and DAMPA are set at 1.0. They
are used as multipliers times the new temperatures while 1.0 minus their
value is used as multipliers times the old temperatures in order to "weight"
the returned answer. This weighting of so much new and so much old is use-
ful for damping oscillations due to nonlinearlties. They may also be used
to achieve over relaxation.

If a series of steady state solutions at various times are desired it can
be accomplished by specifying control constants TIMEND and $UTPUT. @UTPUT
will be used both as the output interval and the computation interval. Im
this case appropriate calls would have to be made in Variables 1 to modify
boundary conditions with time.

If desired, the CINDSL call can be followed by a call to one of the
transient solution subroutines which has the same LPCS requirement. In
this manner the steady state solution becomes the initial conditions for
the transient analysis. However, since CINDSL utilizes control constants
TIMEKD and $UTPUT the user must specify their values in the execution
block after the steady state call and pricor to the transient analysis ecall.

RESTRICTIONS:

The LPCS option is required. Diffusion and arithmetic nodes receive a
“successive point" iteration and an extrapolation method of acceleration.
Control constants NLPPP and DRLXCA and/or ARLXCA must be specified.
Successive steady state solutions can be obtained by specifying control
constants TIMEND and @SUTPUT. Other control constants which are activated
or used are: L¢@PPCT, DRLXCC, and/or ARLXCC, TIMEN, TIMEM, TIME$, DAMPD,
DAMPA, DTIMEU, LINECT and PAGECT. Control constant ¢PEITR is checked
for output each iteration. .

CALLING SEQUENCE: CINDSL

*This subroutine utilizes two dynamic storage core locations for each
diffusion and arithmetic code.

39<

A.2-3



TERYY svsrems

REDONDG BEACH, CALIFORMNIA

NETWORK SOLUTION —- STEADY STATE

EXECUTION SUBROUTINE NAME: CINDSHM

PURPOSE ;

This is a steady state execution subroutine specifically designed for
radiation dominated problems, The CINDSL subroutine is the base and was
modified to operate in a quasi-linear manner. The problem is linearized
(i.e., effective radiation evaluated and held constant) and then the
linearized problem is solved, The nonlinearities are then revaluated and
fixed (linearized) and the problem is again solved. This linearization
frequency is based on a new control constant LAXFAC (an integer). The
user must satisfy the control constant requirements for CINDSL.

RESTRICTIONS :

The long psuedo-compute sequence is required, control constant LAXFAC must -
be specified, See subroutine CINDSL.

CALLING SEQUENCE: CINDSM

60<
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NETWORK SOLUTION -— TRANSIENT

EXECUTION SUBROUTINE NAMES: CNFRWD* or‘CNFRDL*

PURPOSE:

These subroutines perform transient thermal analysis by the explicit.forward
differencing method. The stability criteria of each diffusion node is

n

% - = . % | T (o1d) - T.(old)| # Q. % at

C, [Ti(new) Ti(old)] {E G, [J(o ) ; (0 )] Ql{
i=0

| j#i

Gj represents the conduetors into node i, Qi the source location,

and Ci the nodal capacity -

The stability criteria of each diffusion node is calculated and the

minnimum value is placed in control constant CSGMIN. The time step used
{control constant DTIMEU) is ecalculated as 95% of CSGMIN divided by
CSGFAC. Control constant CSGFAC is set at 1.0 unless specified

larger by the user. A "look ahead" feature is used when calculating DTIMEU.
1f one time step will pass the output time peoint the time step is sel to

come out exactly on the output time point; if two time steps will pass
the output time point, the time step is set so that two time steps will come
out exactly on the output time point, DTIMEU is also compared to DTIMEH

and DTIMEL., If DTIMEU exceeds DTIMEH it is set equal to it; if DTIMEU is
less than DTIMEL the problem is terminated. If no input values are specified,
DTIMEL is set at zero and DTIMEH it is set at infinity. 7The maximum tempera-
ture change calculated over an iteration is placed in control constant DTMPCC
and/or ATMPCC. They are compared to DTMPCA and/or ATMPCA respectively and

if larger cause DTIMEU to be modified so that they campare as equal to or
less than DIMPCA and/or ATMPCA. If DTMPCA and/or ATMPCA are not specified
they are set at infinity.

All diffusion nodes are calculated prior to solving the arithmetic nodes.

The user may iterate the arithmetic node sclution by specifying control
constants NLO@P and ARLXCA. If the arithmetic node iteration count exceeds
NLAPP the answers are accepted as is, and the subroutine continues without

any user notification. In addition, the user may specify control constant
DAMPA in order to dampen possible oscillations due to nonlinearities. The
arithmetic nodes may be used to specify an incompressible pressure or radiosity
network. In this manner they would be solved implicity each time step but
evaluation of temperature varying properties would suffer a one time step lag.

RESTRICTIONS:

The SPCS option is required for CNFRWD, the LPCS option is required for
CNFRDL, and control constants TIMEND and $UTPUT must be specified. Problem
start time, if other than zero, may be specified as TIMEH. Other control
constants used or activated are: TIMEN, TIMEM, CSGMIN, CSGFAC, DTIMEU,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, NLO$P, LOPPCT, DAMPA, ARLXCA, ARLXCC,
@PEITR, BACKUP, LINECT and PAGECT.

CALLING SEQUENCE: CNFRWD or CNFRDL

* These subroutines utilize one dynamic storage core location for each
diffusion and arithmetic node.
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WETHORE SOLUTION —— TRANSYENT

EXECOTION SUBROUTINE RAMI: CNFAST®

PURFGSE: p

fhis subroutine is a2 modified version of CNFRUD which allows the user to
specify the ninimmm time step to be taken. The time step calculations
proceed exactly as in CNFRED until the check with DTIMEL is made. If
DTIMEY is less than DTIMEL it is set equal to it. As each node is cal-
culated its CSGMIN is obtained and compared to DTIMEG. If equal to or
greatey, the nodal calculation is identical to CNFRUD. If cthe CSGMIN for
a node is less than DTIMEU the node receives a steady state ealculation.
If only a small portion of the nodes in a system receive the steady state
calcelation the answers zre gemerally reasonable. However, as the number
ef nodes receiveing steady state calculations increases, so do the solution
inaccuracies.

RESTRICTIONS: )

Tha SPCS opticn is required and control constants TIMEND and $UTPUT must
be specified. The checks on control constants DTMPCA, ATHPCA and BACEUP
are not performed. Other control comstants which are used or activated
are: TIMER, TIME{, TINE(, CSGuEN, CSGPAC, DTTMEU, DTIMKL, DTIMER, DIMPCC,
ATMPCC, DAMPA, ARLXCA, ARLXCC, NL{ZP, LOGPCT, LINECT and PAGECT.

CALLING SEQUEMCE: CKFAST

% This subroutine utilizes one dynamic storage core location for each
diffusion node. '

62<
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NETWORK SOLUTION —— YRANSIENT

EXECUTION SUBROUTIHE NAME: CHEXPN®
PURPOSE:

This subroutine performs transient thermal amalysis by the exponential
prediction method and the sclution equation is of the following form:

XG. AL £G. At '

IG.T Q. - __j__ — __i__
i3 i c Ci
SR [ M 1-e *= +Te
i EGj i

For the derivation the reader should note the referemce below. The above
equation is unconditionally stable no matter what size time step is taken

and reduces to the steady state equation for an infinite tiwe step. However,
stability is not to be confused with accuracy. Time steps larger than those
taken with CNFRUD remain stable but tend to lose or gain energy in the sysiem.
For this reason, this subroutipne is not recommended where accuracy is sought.
However, it is suitable for parametric analysis where trends are sought and a
more accurate method will be utilized for a final analysis. .

The inner workings of the subroutine are virtually identical to CHFRWD with
the exception of the solution equation and the use of CSGFAC. The time step
used (DILHEU) is calculated as CSGMIN times CSGPAC. The lock ahead feature
for calculating the time step is identical as are the checks with DTIMEH,
DTIMEL and DTMPCA. The diffusion nodes are calculated prior to the arithmeric
nodes and the arithmetic nodes utilize NL$QP, ARLXCA and DAMPA exactly the
same as CNFRWD.

RESTRICTIONS:

The SPCS option is required and control constants TIMEND and @UTPUT must be
specified. Problem start time if other than zero may be specified as TIMER.
Other contreol constants used or activated are: TIHMEN, TIMEM, CSGMIN, CSGFAC,
DTIMEU, DTIMEL, DTIMEH, DTMPCA, DIMPCC, ATMPCA, ATMPCC, ARLXCA, ARLXCC, DAMPA,
@PEITR, BACKUP, LINECT and PAGECT.

CALLIRG SEQUENCE: ' CNEXPN

*This subroutine utilizes one dynamic storage core location for each diffusion
and arithmetic node.

Ref: Gaski; J. D. and Lewis, D. R., "Chrysler Improved Numerical Differencing
Analyzer," TN-AP-66-15, April 30, 1965, Page 5.1.3.
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EXECUTION SUBRCUTINE NAME: CRDUTR

PURPOSE :

This subroutine performs an unconditionally stable explicit finite
differencing solution often called the Du Fort-Frankel method. This is
basically the forward Jdifferencing equation but the present temperature of
the node being operated on is replaced by a time weighted average of
future and past temperatures. This substitution is performed on the space
derivative temperatures only. The user may specify time steps larger than
stability criteria, but withim resascn. -

RESTRICTIONS:

The same as CNEXPN, CSCFAC is uscd a2s a factor (>1.0) te increase the time
atep used above the stability limit.

CALLING SEQUENRCE: CNDUFR

Ref: DuFort, E. C. and Frankel, S. P., "Stability Conditions in the
Numerical Treatment of Parabolic Differential Fquations,"
Mathematical Tables and Other Aids to Computaticn, Vol. 7-8,
1953-54, pp 135-152.

A.2-8
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NETWORK SOLUTION —-- TRANSIENT

EXECUTION SUBROUTINE NAME: CNFWBK*

PURPOSE:

This execution subroutine performs transient thermal analysis by implicit
"forward-backward" finite differencing (Crank-Nicholson Method).

#AL

n
Zci*[Ti(new)—Ti(old):l = 3JEOGJ*[TJ (neW)+T {old)- T, (new)-T, (old)]+2Qi
i#1

The LPCS option is required and allows the simultaneous set of equations to

be solved by "successive point' iterations. During the first iteration for

a time step, the capacitance values are doubled and divided by the time step

and the energy transfer rates based on old temperatures are added to the

source locations. Upon completing the time step the capacitance values are
returned to their original state. The iteration looping, convergence criteria
and other control constant checks are identical to CNBACK. The time step checks
and calculations and look ahead feature are identical to that used for CNBACK.

The automatic radiation transfer damping and extrapolation method of accelera-
tion mentioned under the CNBACK subroutine writeup are also employed in this
subroutine. Diffusion and/or arithmetic temperature calculations may be damped
through use of DAMPD and/or DAMPA respectively. Control constants BACKUP and
PPEITR are continuously checked. CNFWBK internally performs forward-backward
differencing of boundary conditions. For this reason the user should utilize
TIMEN as the appropriate independent variable in Variables 1 operations.

It is interesting to note the CNFWBK generally converges in 25% fewer itera-
tions than CNBACK. The probable reason for this is that the boundary of the
mathematical system is better defined. While every future temperature node
under CNBACK is connected to its present temperature, under CNFWBK every future
temperature node is also receiving an impressed source based on the present
temperature.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, @UTPUT DTIMEI NLAYP and
DRLXCA and/or ARLXCA must be specified. Other control constants which are used
or activated are: TIMEN, TIME@, TIMEM, CSGMIN, DTIMEU, DTIMEH, DTMPCA, DTMPCC,
ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or ARLXCC, L@@PCT BACKUP QPEIlR
LINECT and PAGECT.

CALLING SEQUENCE: CNFWBK

*This subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each arithmetic and boundary node,
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NETWORK SOLUTION =— TRANSIENT

EXECUTION SUBROUTINE NAME: - CHNRACK®
PURPOSE:

This subroutine performs transient thermal analysis by implicit backward
differencing. .

n
C.i * [Ti(ne.w) - Ti(old)] =2j:06j * [Tj (new) - Ti(nev)} + Qif*ﬁt

j#i

The LPCS option is required and allows the simultaneous set of equations to
be solved by "successive point" iteration. Each third iteraticn, diffusiom
node temperatures which txace a continuous decreasing slope receive am
extrapolation on their error function curve in an attempt to accelerate
convergence. For convergence criteria the uvsex is required to specify NL@P
and DRLXCA and or ARLXCA. If the number of iterations during a time step
exceeds NLOPP a message is printed but the problem proceeds.

Variables 1 is performed only once for each time step. Since this sub—
routine is implicit the user must specify the time step to be used as DTIMEI
in addition to TIMEND and $UTPUT. The look ahead feature for the time step
calculation in CHNFRWD is used as are the checks for DTIMEH, DTMPCA aad
ATMPCA but not DTIMEL. Damping of the solutions can be achieved through use
of control constants DAMPD and/or DAMPA. Control constants BACKUP and $PEITR
are continuously checked.

Implicit methods of solution oftem oscillate at start up or for boundary
step changes when radiation conductors are presenmt. CNBACK contains an
avtomatic damping feature which is applied to radiation conducters. The
radiation transfer to a node is caleculated for its present temperature and a
temporary new temperature is calculated. Then the radiation transfer is
recalculated and the final node temperature is calculated based oa the
arithmetic mean of the two radiation transfer calculations. This automatic
radiation damping has proven to be quite successful and lessens the need for
use of DAMPD and DAMPA.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, @$UTPUT, DTIMEI, NL{SP
and DRLXCA and/or ARLXCA must be specified. Other control constants which
are used or activated are: TIMEN, TIMEQ, TIMEM, CSGMIN, DTIMEV, DTIMFH,
DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/for ARLXCC, LOgPCT,
BACUP,‘ﬂPEITR, LINECT and PAGECT. :

CALLING SEQUENCE: CNBACK

*This subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each arithmetic and boundary node.

A.2-10
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RETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: CNVARB

PURPOSE:

This subroutine applies an implicit finite differencing solution to the
diffusion equation. It internally calculates a variable beta weighting
factor (see equation 3-3, page 3-3) as the ratio of the explicit stability
criteris, CSGMIN, divided by the computation time step used, DTIMEU. A
" constraint that beta must be equal to or larger than one half is imposed.
Hence, the method of solution lies somewhere between backward and forward-
backward differencing.

RESTRICTTIONS:

The restrictions listed for CNFWBK and/or‘CNBACK apply.

CALLING SEQUENCE: CNVARB

JA. 2-11
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NETWORK SOLUTION - - TRANSIENT

EXECUTION SUBROUTINE NAME: CNQUIK

PURPOSE:

This is an unconditionally stable explicit method of soclution which allows
SINDA users to employ computation intervals larger than CNFRWD. The
method of sclution is a 50-50 combination of exponential predictions
(CNEXPN) and DuFort-Frankel (CNDUFR). Tor a temperature risimg situation
the CNEXPN routine tends to undershoot while CNDUFR tends to overshoot;
however, CMQUIK falls between the two and generally yields better results
than either CNEXPN or CNDUFR,

RESTRICTIONS:

The short pseudo-compute sequence is reduired. The control constant re—
quirements for CNEXPN or CNDUFR apply to CNQUIK.

CALLING SEQUENCE: CNQUIK

A.2-12
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CUTPUT

EXECUTION SUBRQUTINE NAMES: CSGDMP of RCDUMP

PURPQOSE:

These subroutines are designed to aid in the checkout of thermal problem
data decks. They call upon Variables 1 (CSGDMP also calls upon Output
Calls) and then print out each actual diffusion node number with Lhe
capacitance and CSCMIN value of the node. For each node they identify,

the attached conductors by actual conductor number, list the type and
conductance value and the actual number and type of the adjoing wnode.
Either the SPCS or LPCS option may be used. While the LPCS option allows
every conductor attached to a node to be identified, the SPCS option only
identifies conductors for the first node number on which they ocecur. After
the diffusion nodes are processed the connection information for the
arithmetic nodes is listed. After listing the above information control
passes to the next sequentially listed subroutine or CSODMP from Output Calls.

RESTRICTIONS:

The CSGDMP subroutine is called in the Execution block, while RCDUMP can be
called from the Output Calls block. Never call either subroutine from
Variables 1 or CSGDMP from Qutput Calls.

CALLING SEQUENCE: CSGDMP

ot RCDUMP
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ARTTHHETIC SUBROUTIRES

Addition COperation

ADD
ADDFIY
AUDARY

ARYADD

SIMARY

S5ums a variable number of floatimg point numbers

Sums a variable muzber of integer numbers

Adds the corresponding elements of two specified
length arrays to form a third array

Adds a constamt value to every elewmeat in an array
to form a new array

Sums an arvay of floating point values

4

Subtraction Operation

SuB
SUBFIX
SUBARY

ARYSUB

Subtracis a variable number of flcating point numbers
Subtracts a variable number of integer numbers
Subtracts the corresponding e¢lements of one array
from another to form a third array

Subtxacts a constant value from every element in am
array to form a new array

Pultiplication Operation

MLTPLY

HPYFIX
MPYARY

ARYMPY

SCLDE?P
SCLIND
CHPEHP
CHPYI

Huitiplies a variable number of floating point
numbers

Multiplies a variable nunmber of integer numbers

Multiplies the corresponding elements of two arrays
LO form a third.

Meltiplies each element of an array by a constant
value to form a new array

Multiplies the dependent or independent variables of
a doublet type iInterpolation array

Hultiplies two complex numbers on the corresponding
elements of arrays of complex nuwmbers

Division Operation

DIVIDE
DIVFIX
DIVARY

ARYDIV

ARYINV
ARTEDY
ADDIRV
ADARIN

CHPXDV
CDPIvVL

}

Performs a division of floating point numbers

Performs a division of integer numbers

Divides the elements of one array into the corre—
sponding elements of amother array to produce
a third array

Pivides each element of an array by a comstant value
to produce a new array

Inverts each element of am array in its own locationm

Pivides each element of an array into a constamnt
value to form a new array ,

Calculates one over the sum of the inverses of a
variable number of arguments

Calculates one over the sum of inverses of an array
of values

Divides two complex numbers or the corresponding
elements of arrays of complex numbers

70<
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Integer/Floating Point Conversion

FLAAT
FIX
INTRFC

Converts an integer to a floating point number

Converts a floating point number to an integer

Fractures a floating point number to yield the
largest integer value possible and the
remainder as a floating point number

Sign Conversion

SETPLS

ARYPLS

SETMNS

ARYMNS

Sets the sign positive for a variable number of
arguments

Sets the sign positive for data in a specified
length array

Sets the sign negative for a variable number of
arguments

Sets the sign negative for every data value in a
specified length array

Distribution of Array Data

SHETV
SHEFTVR

FLIP
GENARY

BLDARY

BRKARY}
BKARAD
ST@ARY}
ARYSTH
STFSEP

SCALE

STFSEQ
STFSQS}
SLDARY
SLDARD}
STPRMA

Shifts a sequence of data from one array to another

Shifts a sequence of data from one array and place
data in reverse order in another array

Reverses an array in its own array location

Generates an array of equally incremented ascending
values

Builds an array from a variable number of arguments
in the order listed

Distributes values from within an array to a variable
number of arguments in the order listed

Places a value inte or takes a value out of a
specific array location

Places a constant value into a variable number of
locations ,

Utilizes a constant value to multiply a variable
numher of arguments

Stuffs a constant value into a specified length
array or group of sequential locations

Moves array data values back one or two positions
and updates the last one or two values

Constructs historical data arrays during a
transient analysis

Singlet/Doublet Array Generation

SPLIT
JPIN
SPREAD

Separates a doublet array into two singlet arrays

Combines two singlet arrays into a doublet array

Applies interpolation subroutine D1DIDA to two
singlet arrays to obtain an array of dependent
variables versus an array of independent
variables

A.3-10
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Comparison Operation

MAXDAR Obtains the absolute maximum difference between A.3-17
MXDRAL corresponding elements of two arrays of equal "
length N
o<
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ADDITION OPERATION

SUBROUTINE NAMES: ’ ADD or ADDFIX

PURPOSE:

To sum a variable number of floating point or integer numbers respectively.
S=2Xi ) i=1,2,3’-n-,N ) N.>_2

RESTRICTIONS:

Subroutine ADD is for floating point numbers while subroutine ADDFIX is
for integers.

CALLING SEQUENCE: ADD(X1,X2,%X3,...,XN,S)
or ADDFIX(X1,X2,X3,...,XN,S)

SUBROUTINE NAMES: ' ADDARY or ARYADD

PURPOSE:

Subroutine ADDARY will add the corresponding elements of two specified
length arrays to form a third array. Subroutine ARYADD will add a
constant value to every element in an array to form a new array. Their
respective operations are:

Al = B1 + Ci s i=1,N

BL + C s i=1,N

or Ai

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array lemgth N must be an integer.

CALLING SEQUENCE: ADDARY(N,B(DV),C(DV),A(DV))
or ‘ARYADD(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.

SUBROUTINE NAME: ' SUMARY

PURPOSE:
To sum an array of floating point values:
S§=LAi , 1= 1,N

RESTRICTIONS:

The values to be summed must be floating point numbers and the array
length N must be an integer.

CALLING SEQUENCE: SUMARY (N,A(DV),S)

A.3-4 <
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SUBTRACTION OPERATICN

SUBROUTINE RAMES: SUB or SUBFIX

PURPOSE:

To subtract a variable number of floating point or integer numbars
respectively.

R=Y-rxt,i=1,2,3,...,N,N>1

RESTRICTIONS:

Subroutine SUB is for floating point numbers while the subroutine SUBFIX
is for integers.

CALLING SEQUENCE: . SUB(Y,X1,X2,X3,...,XN,R)
or  SUBFIX(Y,X1,X2,X3,...,XN,R)

SUBROUTINE KAMES: . SUBARY .or ARYSUB

PURPOSE:

Subroutine SUBARY will subtract the corresponding elements of one array
from another to form a third array. Subroutine ARYSUB will subtract a
_constant value from every element in an array to form a new array. Their
respective operations are:

Al
or Ai

it

BLf -Ci , 1=1,N
Bi - C , 1=1,N

]

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
- array length N must be an integer.

CALLING SEQUENCE: SUBARY (N,B(bV),C(DV),A(DV)
or ARYSUB(N,B(DV),C,A(DV})

The answer array may be overlayed into one of the input array areas.

74 <
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MULTIPLICATION OPERATION

SUBROUTINE NAMES: MLTBLY or MPYFIX
PURPOSE :

To multiply 2 variable number of floating point or integer numbers
respectively.

P = XI%X2%¥3,..%xn , N> 2

RESTRICTIONS:

Subroutine MLTPLY is for floating point numbers while subroutine MPYFIX
is for integers.

CALLING SEQUENCE: MLTPLY (X1,X2,X3,...,XN,P)
or  MPYFIX(X1,X2,X3,...,XN,DP)

SUBROUTINE NAMES: MPYARY or ARYMPY

PURPOSE:

Subroutine MPYARY will multiply the corresponding elements of two arrays
to form a third. Subroutine ARYMPY will multiply a constant value times
each element of an array to form a new array. Their respective operations
are:

1,N
1,8

Al
or Ai

L]
Hi

Bi * Ci , 4
Bi*C , i

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE:

MPYARY (N, B(DV) ,C(DV) ,A(DV)})
or  ARYMPY(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input drray areas.

o<
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MOLTIPLICATION OPERATION

SUEROUTINE NAMES:- SCLDEP oy SCLIND
PURPOSE:

These subroutines will multiply the dependent or independent variables of
a doublet type interpolation array respectively. Their respective
operations are:

A
or Al

X*Ai , i

XHAL , i

3,5,7,0..,N41
2,4,6,...,N

RESTRICTIONS:

All values must be floating point. The arrays must contain the length
integer count as the first value which must be even.

CALLING SEQUENCE: SCLDEP(A(IC),X)
or SCLIND(A(IC),X)

SUEROUTINE NAMES: CHMPXMP or CMPYIX

PURPOSE:

* These subroutines will multiply two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

(C'+ iD)*(E + iF) , i= 1
(Cj + iDj)*(Ej + iFj) , j= L,R

A + iB

[l

of  Aj + iBj

RESTRICTIONS:

All numbers must be floa%ing point except for N which must be an integer.

CALLING SEQUENCE: =~ cMPXMP(C,D,E,F,A,B)
or  CMPYI(N,C{DV),D{(DV};E(DV),F{DV),A(DV),B{(DV))

A.3-7
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DIVISIOR OPERATICN

SUBROUTINE RAMES: ' DIVIDE or DIVFIX

PURFOSE:
To perform a division of floating point or integer numbers respectively.
Q=7Y/CXi, i=1,2,3,...,N , N>1

RESTRICTIONS:

Subrgutine DIVIDE is for floating point numbers while DIVFIX is for
integers. '

CALLING SEQUENCE: DIVIDE(Y,X1,X2,X3,...,XN,Q)
or  DIVFIX(Y,X1,X2,X3,...,XN,Q)

SUBROUTINE NAMES: DIVARY or ARYDIV

PURPOSE:

Subroutine DIVARY will divide the elements of one array into the
corresponding elements of another array to produce a third array.
Subroutine ARYDIV will divide each element of an array by a constant
valuve to produce a new array. Their respective operations are:

Al
or Al

Bi/Ci , 1 = 1,N
Bi/C , 1 = 1,N

RESTRICTIONS:

A1l data values to be operated on must be floating point numbeyxs. The
array length N must be an integer.

CALLING SEQUENCE: DIVARY (N,B{DV),C{(DV),A{DV))
or ARYDIV(N,B{DV),C,A(DV))

The answer array may be overlayed into ome of the input array areas. .

77 <
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DIVISION OPERATION

SUBROUTINE NAMES: ARYINV or ARINDV

PURPOSE:

Subroutine ARYINV will invert each element of an array in its own location.
Subroutine ARINDV will divide each element of an array into a constant
value to forma a new array. Their respective operations are:

Ad
or Al

It

1.0/A1 , i
B/Ci s i

i
"

1,H
1,N

RESTRICTIONS:

All data values must be floating point numbers. The array leagth N must
be an integer.

CALLING SEQUENCE: . ARYINV(N,A(DV))
oT ARINDV(N,C(DV},B,A(DV)}

(The ARINDV answer array may be overlayed into the input array area.)

SUBROUTINE NAMES: ADDINV ‘or ADARIN

PURPOSE:

Subroutine ADDINV will calculate one over the sum of the inverses of a
variable number of arguments. Subroutine ADARIN will calculate one over
the sum of inverses of an array of values. These subroutines are useful
for calculating the effective conductance of series conductors. Their
respective operations are:

Y
or Y

L+ 1 /X), N>2

1.0/CL./0 + 1./X2 + .
=1,2, ... , N

1.0/z(1. /X1y , 4

RESTRICTIONS:

All data values must be floating point numbers. The array length N must
be an integer.

CALLING SEQUENCE: ADDINV (X1.,X2,X3,...XN,Y)
or ADARIN(N,X(DV),Y)

"78<
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DIVISION OPERATION

SUBROUTINE NAMES: ' CMPXDV  or CDIVI

PURPOSE:

These subroutines will divide two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:’

A+ iB = (C + iD)/(E +iF) , 3= VAL
or Aj + iBj = (Cj + iDj)/(Ej + 1iFj) , j = 1,N

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXDV(C,D,E,F,A,B)
or CDIVI(N,C(DV),D(DV),E(DV),F(DV),A(DV},B(DV))

INTEGER/FLOATING POINT. CONVERSION .

SUBROUTIKE NAMES: -FLYAT or FIX or INTRFC

PURPOSE:
Subroutine FLPAT will convert an integer to a floating point number.
Subroutine FIX will convert a floating point number to an integer,
Subroutine INTRFC will fracture a floating point number to yield the
largest integer value possible and the remainder or fractional portion
as a floating point number. Their respective operations are:

L or

]

R
e BB
[
M=

RESTRICTIONS:

X and F arguments must addreés floating point values and the N argument
address an integer.

CALLING SEQUENCE:

FLAT (N, X)
or FIX(X,N)
or INTRFC(X,N,F)

'79<
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SIGR CONVERSION

SUBROUTINE NAMES: 7 SETPLS or ARYPLS

PURPOSE:

SETPLS will set the sign positive for a variable number or arguments,’
while ARYPLS will set the sign positive for every data value in a
specified length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numbers.
The number (N) of data values in the array must be specified as an
integer. ‘
CALLING SEQUENCE: ~ SETPLS(A,B,C...)

or  ARYPLS{N,A(DV)})

where N may be a literal integer or the address of a location containing
an integer and A(DV) addresses the first data value in the array.

SUBROUTINE NAMES: SETMNS or ARYMNS

PURPQSE:

SETMNS will set the sign negative for a variable number of arguments,
while ARYMNS will set the sign negative for every data value in a
specified length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numbers.
The number (N) of data value in the array must be specified as an
integer. ' -

CALLING SEQUENCE: . SETMNS(A,B,C,...)

or ARYMNS (N,A(DV))

where N may be a literal integer or the address of a location containing
an integer and A(DV) addresses the first data value in the array.

80<
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: SHFTV or SHFTVR or FLIP

PURPOSE:

Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR will shift a sequence of data from one array and place
it in another array in reverse order. Subroutine FLIP will reverse an
array in 1ts own array location. Their respective operations are:
A(1) = B(1) s 1=1,N
or A(N-i41) = B(i) , 1=1,N
or A(i)new = A(N-i+2)cld . i=2,N+1

n-

RESTRICTIONS:

The data values to be shifted or reversed in order may be anything. The
N must be an integer.
CALLING SEQUENCE: SHFTV(N,B(DV),A(DV))
or SHFTVR (N, B(DV) ,A(DV)}
FLIP(A(IC))

The answer array may not be overlayed into the input array.

SUBROUTINE HNAME: GENARY

PURPOSE:

This subroutine will generate an array of equally incremented ascending
values. The user must supply the minimum wvalue, maximum value, number
of values in the array to be generated and the space for the generated
array. '

RESTRTCTIONS:

All numbers must be floating point.

CALLING SEQUENCE: GENARY(B(QV),A(DV))
where B(1) = minimum value
B(2) = maximum value
B(3) = 1length of array to be generated {fleoating point)

81<
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DISTRIRUTION OF ARRAY DATA

SUBROUTINE NAME: BLDARY

PURPOSE:

This subroutine will build an array from a variable number of arguments

in the order listed. The operation performed is: .
At=Xi , 1=1,N

RESTRICTIONS:

Data may be of any form. The subroutine obtains the integer array length
N by counting the arguments.

CALLING SEQUENCE: BLDARY(A(DV),X2,X2,X3,...,XN)
SUBROUTINE NAME: ' BRKARY or BKARAD
PURPOSE:

These subroutines will distribute values from within an array to a variable
number of arguments in the order listed. The first places the value into
the location while the second adds it to vhat is in the location.
Respective operatlons are:

Xi = Ai , 1=1,N
or i =X1 + Al s i=1,N

RESTRICTIONS:

Floating point numbers must be used for BKARAD. The integer array length
N is obtained by the routines by counting the number of arguments.

CALLING SEQUENCE: BRKARY (A(DV),X1,X2,%3,...,XN)
' or BKARAD(A(DV) ,X1,%2,X3,...,XN)

SUBROUTINE NAMES: STPARY or ARYSTY

PURPOSE:
These subroutines will place a value into or take a value out of a
specific array location respectively. Thelr respective operations are:
Al=X , 4=N ,HN>0
or X = Al R i=N ,N>0
RESTRICTIONS: -

The value may be anything but N must be an integer.

CALLING SEQUENCE: STPARY (N, X,A(DV))
or ARYST@{N,X,A(DV))

=
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: STFSEP or SCALE
PURPOSE:

Subroutine STFSEP will place a constant value into a variable number of
locations. Subroutine SCALE will utilize a constant value to multiply a
variable number of arguments, each having a location for the product,
The respective operations are:

[
I

Xi = Y s
or Xi

=1,2,3,...,N
=1,2,3,...,N

il
o
3,
™
o
[
I

3

RESTRICTIONS:

STFSEP may be used to move any desired value but SCALE can only be used
for floating point numbers.

CALLING SEQUENCE: STFSEP(Y,X).,X2,X3,...,XN)
or SCALE(Y,21,X1,22,%X2,...,ZN,XN)

SUBROUTINE NAMES: STFSEQ or STFSQS

PURPOSE:

Both subroutines will stuff a constant data value into a specified length
array or group of sequential locations. STFSEQ expects the constant data
value to be in the first array locatlon while STFSQS requires it to be
supplied as an additional argument. The respective operations performed
are:

]

Ai=A1 , i=2,N
or 41 =B s i=1,N

il

RESTRICTIONS: |

N must be an integér but the constant data value may be integer, floating
point or alpha-numeric.

CALLING SEQUENCE: STFSEQ(A(DV),N) R
or  STFSQS(B,N,A(DV))

Bi<
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: SLDARY or SLDARD

PURPOSE:

These subroutines are useful for updating fixed length interpolation

arrays during a transient analysis. The array data values are moved back
one or two positions, the first one or two values discarded and the last
one or two values updated respectively. The "sliding array" thus main-
tained can then be used with standard interpolation subroutines to simulate
transport delay phenomina. Their vespective operations are:

Al = A1 +1 s 1= 2,N
and Al = X ' i=N+1
ot Ai = AL + 2 , i=2,N-1
and Ai =X and A1 +1 =Y s i=N

RESTRICTIONS:

The addressed arrays must have the array integer count N as the first
value. For SLDARD, N nust be even.

CALLING SEQUENCE: SLDARY (X,A(IC})

SLDARD(X,Y,A(IC))
SUBROUTINE NAME: STPRMA
PURPOEE:

This subroutine is useful for constructing historical data arrays during a
transient analysis. It can take the place of several ST@ARY calls. The
operaticns are as follows:

AI(N) = X1
A2(N) = X2
A3(N) = X3

e
.

RESTRICTIONS:

N must be or reference an integer, the X's may be any value.

CALLING SEQUENCE: STPRMA (N, X1,A1 (DV) ,X2,A2 (DV) ,X3,A3(DV),...)

Ri<
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SINGLET/DOUBLET ARRAY GENERATION

SUBROUTINE NAMES: SPLIT or J@IN

PURPQOSE:

These subroutines separate a doublet array into two singlet arrays or
combine two singlet arrays into a doublet array respectively. Their
respective operations are:!

Bl = Azi-1 s i=1,N
Ci = Azi > 1= 1,N
or A2i-1 = Bi ’ i = 1,KN
A2i = Ci s i=1,N

RESTRICTIONS:

The arrays may contain any values but N must be an integer. N is the length
of the B and C arrays and the A array must be of length 2N.

CALLING SEQUENCE: SPLIT(N,A(DV),B(DV),C(DV))
or  JOIN(N,B(DY)Y,C(DV),A(DV))

SUBROUTINE NAME: SPREAD

PURPOSE:

This subroutine applies interpolation subroutine DIDIDA to two singlet
arrays to obtain an array of dependent variables versus an array of
independent variables., It 1s extremely useful for obtaining singlet

arrays of various dependent variables with a corresponding relationship

to one singlet independent variable array. The dependent variable arrays
thus constructed can then be operated on by array manipulation subroutines
in order to form composite or complex functions. Doublet arrays can first
be separated with subroutine SPLIT and later reformed with subroutine J@IN.

RESTRICTIONS:

All data values must be floating point except N which must be the integer
length of the array to be constructed. The arrays fed into D1D1DA for
interpolation must start with the integer count. X is for independent
and Y is for dependent. I is for input and ¢ is for output.

CALLING SEQUENCE: SPREAD(N,X{1C),Y(IC),XI{DV),YH(DV))

A.3-16
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COMPARLSON OPERATION

SUBROUTINE NAMES: MAXDAR or MXDRAL
PURPOSE:

These subroutines will obtain the absolute maximum difference between
corresponding elements of two arrays of equal length N. The array -
values must be floating point numbers. The operation performed is -

L=

D=|Ai-Bi| , i=1,N
max

Subroutine MXDRAL also locates the position P between 1 and N where the
maximum occurs.

RESTRICTIONS:

The N argument must be an integer., The D and P arguments are returned as
floating point numbers.

CALLING SEQUENCE: MAXDAR(N,A(DV) , B{DV),D)
or  MXDRAL(N,A(LV),B(DV),D,P)

B6<
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A.4 INTERPOLATION/EXTRAPOLATION SUBROUTINES

Lagrangian Interpolation : . Page
LAGRAN Uses one doublet array ' A4-3
LGRNDA Uses two singlet arrays H

Linear Interpolation -~ Single Variable

D1DEG]1 Uses one doublet array A.b4-4
D1D1DA Uses two singlet arrays "
D1D1wWM Uses DIDEGl and multiplies the interpolation by the "
Z value '
D11MDA Uses D1DIDA and multiples the interpolation by the "
Z value .
DiMDG1 Uses the arithmetic mean of two input values as the i
independent variable; wuses a doublet array
DIMIDA Same as DIMDGl except two singlet arrays are used "

DIMIWM Uses DIMDG]l and multiplies the interpolation by the A.4-5
Z value :
DIMIMD Uses DIMIDA and multiplies the interpolation by the "
Z value
D1DG1I Performs interpolation on an array of X's to obtain "
DlDlIM! an array of Y's "
D1DIMI B
DI1DAI Identical to DIDGLI, DID1IM and D1DIMI, except for "
D11DIM the use of singlet arrays and call on DIDIDA "
D11iMDI "

D1IMWM mean of two input values as the independent "

DlIMle These are indexed subroutines which use the arithmetic A.4-6
D1IMIM variable t

Linear Interpolation - Two Single Variables

CVQlHT} Performs two single variable linear interpolatioms "
CVQLWM

Linear Interpolations — Variables 1 Calls

VARSCM Subroutines set up as Variables 1 calls when possessing A.4-7
VARCCM the 5IV and DIV mmemonic codes in the nodal data "
VARC1 block "
VARC2 X "
VARGSM Subroutines set up as Variables 1 calls when processing "
VARGCM the SIV and DIV mnemonic codes in the conductor data "
VARG1 block : ' : "
VARG2 : ' : "

Parabolic Interpolation ~ Single Variable

D1DEG2 Uses LAGRAN and a doublet array A.4-8
D1DZDA Uses LGRRDA and two singlet arrays "
D1D2WM Uses LAGRAN and multiplies the interpolation by the "

Z value
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D12MDA Uses LGRNDA and multiplies the interpolation by the
by the Z value
DIMDG2 Uses the arithmetic mean of two input values as
independent variable; wuses doublet array
DIM2DA Same as DIMDGZ except two single arrays are used
DIM2WM Uses DIMDGZ and multiplies the interpolation by the
o Z value
DIM2MD  Uses DIMZDa and multiplies the interpolation by the Z
: value

Cyclical Interpolation Arravs

D11CYL Reduces core storage requirements and uses linear
DA11CY interpolation

D12CYL Identical to D11CYL and DA11CY except that parabolic
DA12CY interpolation is used

DllMCY} Identical to D12CYL and DAl2CY except that the inter-
DA1IMC polation is multiplied by the value in address Z
DlZMCY} Identical to D1IMCY and DAl1IMC except that parabolic
DA]2MC Interpolation is used

Point Slope Interpolations

GSL@PE Generates a slope array so that point slope interpola-
, tion can be used

PSINTR} Point slope interpolation

PSNTWM

Bivariate Interpolations

Bivariate Array Format

BVSPSA}, Uses an input Y argument to address a bivariate

BVSPDA array '

BVTRN1 } Constructs a bivariate array of Y's versus X and Z

BVTRN2 from an input array of Z's versus X and Y

D2DEGL Performs bivariate linear interpolation

D2DEG2 Performs bivariate parabolic interpolation

D2D1WM Uses D2DEGl and multiplies the interpolation by the
W value

D2D2WM Uses D2DEG2 and multiplies the interpolation by the
W value '

nzwcnl} Identical to D2DEGl and D2DEG2 except that the arith-

D2MXD2 metic mean of two X values is used as the X
independent variable

D2MX1M}_ Identical to D2D1WM and D2D2WM except that the arith-

D2MX2M metic mean of two X values is used as the X
independent variable

Trivarlate Interpolations

‘Trivariate Array Format

D3DEG1 Performs trivariate linear interpolation
D3D1wM

Linear Extrapolation

ITRATE Linearly extrapolates a new guess on the basis of
Zero error
A4-2 Q8

A.4-8

A.4-9

Ao 4-10

A.4-11

"
"

A 4-12

A.4-13

1

A. 4_14
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LAGRANGIAN INTERPOLATION

SUBROUTINE NAMES: - LAGRAN or LGRNDA

PURPQOSE: -

These subroutines perform Lagrangian interpolation of up to order 50. The
first requires one doublet array of X, Y pairs while the second requires
two singlet arrays, omne of X's and the other of Y's. They contain an
extrapolation feature such that if the X value falls outside the range of
the independent variable the nearest dependent Y variable value is '

returned and no error is noted.
_

' n oy o-xi L '
YmPn X)= I Yk O =X ,n=1,2,3,...,50max.
k=0 i=0 '
. 1#k
RESTRICTIONS:

All values must be floating point except N which is the order of interpola-'
tion plus one and must be an Integer. The independent variable vaiues
must be in ascending order.
CALLING SEQUENCE: LAGRAN(X,Y,A(IC),N)

or LGRNDA(X,Y ,AX(IC) ,AY(IC),Y)

NOTE:
A doublet array is formed as follows:

IC,X1,Y1,X2,Y2,X3,¥3,... ,XN,TN
where IC = 2*8 (set by program)

~and singlet arrays are formed as follows:
IC,X1,X2,X3,...,XN

1¢,¥1,Y¥2,Y3,...,¥YN
and IC = N (set by program)

A.4-3
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LINEAR INTERPOLATION - SINGLE VARTIABLE

SUBROUTINE NAMES: DIDEGL or DI1DIDA
PURPOSE:

These subrcoutines perform single variable linear interpolation on doublet
or singlet arrays respectively. They are self-contained subroutines that
are called upon by virtually all other linear interpolation subroutines.

RESTRICTIONS:

All values must be floating point numbers. The X independernt variable
values must be in ascending order.

CALLING SEQUENCE: DIDEG1 (X, A, (IC),Y)
or D1DIDA(X,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: ' DIDIWM or DL1IMDA

PURPOSE:

These subroutines perform single variable linear interpolation by calling
on DIDEGLl or DID1DA respectively. However, the interpclated answer is
multiplied by the value addressed as Z prior to being returned as Y.

RESTRICTIONS:

Same as DIDEGL or DIDIDA and Z must be a floating point number,

CALLING SEQUENCE: DIDIWM(X,A(IC),Z2,Y)

or DllMDA(X,AX(IC),AY(IC),Z,Y)

SUBROUTINE NAMES: DIMDG1 or DIMIDA

PURPOSE: ' ‘

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two

singlet arrays respectively.

RESTRICTIONS:

See DIDEGL or DIDIDA as they are called on respectively.

CALLING SEQUENCE: DIMDGI (X1,%2 ,A(IC),Y)

or DIMIDA(X1,X2,AX{IC),AY(IC),Y)
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LINFAR INTERPOLATION ~ SINGLE VARIABLE

SUBROUTINE NAMES: © DIMIWM or DIMIMD

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. The interpolated answer is
multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DIMDGl or DIMIDA and 7 must be a floating point number.

CALLING SEQUENCE: DIMIWM(X1,X2,A(IC),Z,Y) or DIMIMD(XL,X2,AX(1C),AY(IC),Z,Y)

SUBROUTINE NAMES: DIDGIY or DIDIIM or DIDIMI

PURPOSE:

These subroutines perform single variable linear interpolation on an array -
of X's to obtain an array of Y's. DIDIIM multiplies all interpolated
values by a constant Z value while DIDIMI allows a unique Z value for each
X value. They all call on DI1DEGI.

RESTRICTIONS:

The number of input X's must be supplied as the integer N and agree with
the number of Y and Z locations where applicable. Z values must be
floating point numbers.

CALLING SEQUENCE: D1DGLI(N,X(DV),A(IC),Y(DV))
or  DIDIIM(N,X(DV),A(IC),Z,Y(DV})
or  DIDIMI(N,X(DV),A(IC),Z(DV),Y(DV))

SUBROUTINE HAMES: DilDAI or D11DIM or D1IMDI
PURPOSE:

These subroutines are virtually identical to DIDGII, DID1IM and DIDIMI
respectively. The difference is that they require singlet arrays for

interpolation and call on DIDIDA.

RESTRICTIONS:

Same as D1DG1I, DID1IM and D1DIMI.

CALLING SEQUENCE: DllDAI(N,X(Dv),AX(IC),AY(IC),Y(DV))
or D;lDIM(N,x(Dv),Ax(IC),AY(IC),Z,Y(DV))
or D1IMDI (N, X(DV) ,AX(IC) ,AY(IC),Z(DV),Y(DV))

A.4-5
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LINEAR INTERPOLATION - SINGLE VARIABLE/TWD SINGLE VARIABLES

SUBROUTINE NAMES: -~ DLIMDL or D1IMWM or DIIMIM
PURPOSE:

These are indexed subroutines which use the arithmetic mean of two input
values.as the independent variable for linear interpolation. The string of
- answers (Y) produced are left as is (D1IMD1), are all multiplied by a
single factor (D1IMWM), or each answer is multiplied by a separate factor.

RESTRICTIONS:

* The interpolation array addressed must have an even number of Input values
and the independent variables must be in ascending order. These routines
 call upon D1D1WM. N is the number of times the operation is to be performed.

'CALLING SEQUENCE: : ' :

' "D1IMD1 {N,X1(DV),X2 (DV),4,Y(DV))
or  DIIMWM(N,X1(DV),X2(DV),A,Z,Y(DV))
or  DLIMIM(N,X1(DV),X2(DV),A,Z(DV),Y(DV)

LINEAR INTERPOLATION - TWO SINGLE VARIABLES

SUBROUTINE NAMES: CVQ1HT or CVQLWM
PURPOSE:
These subroutines perform two single variable linear interpclations. The
interpolation arrays must have the same independent variable X and dependent
variables of, let's say, R(X) and 5(X). Additional arguments of Y, Z and T
complete the data values. The post interpolation calculations are respec-
tively:
Y = S(X)*(R(X)-T)
or Y = Z*¥5(X)(R(X)-T)

RESTRICTIONS:

Interpolation arrays must be of the doublet type and have a common independ-
ent variable. All values must be floating point numbers.

CALLING SEQUENCE:

CVQIHT(X,AR(IC),AS(IC),T,Y)

or  CVQLWM(X,AR{IC),AS(IC),T,Z,Y)

92
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SUBROUTINE NAMES: VARCSM or VARCCM or VARC1 or VARC2

PURPOSE: These are linear interpolation subroutines carried over from
CINDA-3G. Mnemonic options utilized in the Node Data block caused inser-
tion of these calls into the Variables 1 block. This does not apply for
the SINDA program but the routines remain as they could be called directly
by a user. The routines are similar in that the C argument is a function
of the T argument which is the independent variable for interpolation from
the doublet array A argument, answer to which is multiplied by the factor F
argument. Where two A's and F's are referenced in the same call, separate
interpolations and multiplications are performed and the answers summed.

RESTRICTIONS: VARC1 and VARC2 reference only one A argument for interpola-
tion, the other A~F position arguments are multiplied together to form
their contribution to the answer.

CALLING SEQUENCE: - VARCSM (T, C, A(IC), F)
. VARCCM (T, C, AI(IC), F1, A2(IC), F2)
¢ _ VARC1 (T, C, 1.34, F1, A2(IC), F2)
VARC2 (T, C, Al(IC), F1, 2.87, F2)
SUBROUTINE NAMES: VARGSM or VARGCM or VARG]l or VARGZ

PURPOSE: As above, these routines are carried over from the CINDA-3G
program except that they pertained to the conductor block. The mean
temperature of the two T arguments is used as the independent variable

for interpolation when VARGSM is called except if the F argument is
negative, in which case the Tl argument is used. The other three routines
use the T1 for Al and/or T2 for A2 to obtain two partial values (as
described above) which are then combined as one over the sum of the
inverses:

G=1.0/(1.0/G1 + 1.0/G2)

RESTRICTIONS: The A arguments must reference the integer count of
of doublet interpolation arrays.

CALLING SEQUENCE:

VARGSM (G, T1, T2, A(IC), F)

VARGCM (G, T1, T2, Al(IC), F1, A2(IC), F2)
VARGl (G, T1, T2, 4.78, F1, A2(IC), F2)
VARG2 (G, Tl, T2, AL(IC), F1, 7.93, F2)

23
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PARABGLIC INTERPOLATICN - SINGLE VARIABLE

SUBROUTINE NAMES: : : " DIDEG2 or D1D2DA

PURPOSE:

These subroutines perform single variable parabolic interpolation. The
first requires a double array of X, Y pairs while the second requires
singlet arrays of X and Y. values. They call on subroutines LAGRAN and
LGRNDA respectively. ’ o

?

RESTRICTIONS:

See LAGRAN or LGRNDA respectively.

CALLING SEQUENCE: ' DIDEG2 (X,A(IC),Y)

or  DID2DA(X,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: . D1D2WM or D1ZMDA

PURPOSE:

These subroutines perform single variable parabolic interpolation by
czlling on LAGRAN or LGRMDA respectively. However, the interpolated
answer is multiplied by the value addressed as Z prior to being returned
as Y.

RESTRICTIONS:

Same as LAGRAN or LGRNDA and Z must be a floating point number.

CALLING SEQUENCE: . D1D2WM(X,A(IC),Z,Y)

or  D12MDA(X,AX(IC),AY(IC),Z,Y)

94<
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PARABOLIC INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: DIMDG2 or DIM2DA

PURPOSE: -

These subroutines use the arithmetic mean of twoe input values as the
independent variable for parabolic interpolation. They require a doublet
or two singlet arrays respectively. :

RESTRICTIONS:

See LAGRAN or LGRNDA as they are called on respectively.

CALLING SEQUENCE: DIMDG2 (X1,X2,A(IC),Y)

or  DIM2DA(X1,X2,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: : D1M2WM or DIMIMD

PURPOSE:

These subroutines use the arithmetic mean of two input values as the
independent variable for parabolic interpolation. The interpolated answer
is multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DIMDG2 or DIM2DA and Z must be a floating point number.
CALLING SEQUENCE: DIM2WM(X1,X2,A(IC),Z,Y)
or DIM2MD(X1,X2,AX(IC),AY(IC),Z,Y)

95<
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SUBROUTINE NAMES: ' 'D11CYL or DA1lCY

PURPOSE: These subroutines reduce core storage requirements for cyclical
interpolation arrays. The arrays need cover one period only, and the
period (PR) must be specified as the first argument. Linear interpolation
is performed, and the independent variable must be in ascending order.

RESTRICTIONS:  All values must be floating point. Subroutine INTRFC is
called on by both D11CYL and DA11CY, then DIDEGl or D1DIDA respectively.

CALLING SEQUENCE: D11CYL(PR,X,A(IC),Y)
or DAL1CY (PR, X, A% (IC),AY(IC),Y)

SUBROUTINE NAMES: D12CYL or DAlZCY

PURPOSE: These subroutines are virtually identical to D11CYL and DA11CY
except that parabolic interpolation is performed.

RESTRICTIONS: See D11CYL and DA11CY. Subroutines LAGRAN and LGRKDA
respectively are called on.

CALLING SEQUENCE: D12CYL(PR,X,A(IC),Y)
) or DA12CY (PR, X, AX{IC),AY(IC),Y)

SUBROUTINE NAMES: D11MCY or DA11MC

PURPOSE: These subroutines are virtually identical to D11CYL and DATICY
except that the interpolation is multiplied by the floating point Z wvalue
prior to being returned as Y.

RESTRICTIONS: Call on subroutines DI1DEGl and D1DIDA respectively.

CALLING SEQUENCE: DLIMCY (PR, X,A(IC),Z,Y)
or  DALIMC(PR,X,AX(IC),AY(IC),Z,Y)

SUBROUTINE RAMES: D12MCY or DA12MC

PURPOSE: These subroutines are virtually identical to DI11MCY and DA11IMC
except that parabolic interpolation is performed.

RESTRICTIONS: Calls on subroutines LAGRAN and LGRNDA respectively.

- CALLING SEQUENCE: D12MCY (PR, X,A(IC),Z,Y)
' or  DAI12MC(PR,X,AX(IC),AY(IC),Z,Y)
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POINT SLOPE INTERPOLATICH

SUBROUTINE NAMES: ' GSLOPE

PURPOSE: - -

This subroutine'will generate a slope array so that -point slope interpola-
tion subroutines can be used instead of standard linear interpolation sub-
routines. The user must address two singlet type arrays and a singlet slope
array will be produced. .

RESTRICTIONS :

The X independent variable array must be in ascendiﬁg order. All arrays
must be of equal length and contain floating point numbers.

CALLING SEQUENCE:

GSLOPE(AX(IC) ,AY (IC),AS(IC))

SUBROUTINE NAMES: . PSINTR or PSNTWM

PURPOSE:

These subroutines perform linear interpolation and require arrays of the ¥
points and slopes which correspond to the independent variable X array.
All values must be floating point numbers. PSNTWM multiplies the
interpolated answer by Z prior to returning it as Y.

RESTRICTIONS:

The independent X and dependent Y and slope arrays must be of equal length.

CALLING SEQUENCE:

PSINTR(X,AX(IC},AY(IC),AS(IC),Y)

J'or. PSNTWM (X,AX(IC),AY(IC),AS(IC),Z,Y)

Ao 4"'11
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BIVARIATE ARRAY FORMAT Z=£(X,Y)

Bivariate arrays must be rectangular, full and input in the followiag row
order:

IC,N ,X1,X2,X3, « « . , XN
Y1,211,212,213, . . . , ZIN
¥2,221,222,223, . . . , Z2N

YM, ZM1,ZM2,ZM3, . . . , ZMN

where N is the integer number of X variables. All other values must be
floating point numbers, and the X and Y values must be in ascending order.

SUBROUTINE NAMES: BVSPSA or BVSPDA

PURPOSE: These subroutines use an input Y argument to address a bivariate
array and pull off a singlet array of Z's corresponding to the X's or pull
off a doublet array of X, Z values, respectively. The integer count for
the constructed arrays must be exactly N or 2*N respectively. To use the
singlet array for an interpolation call the X array can be reached by
addressing the N in the bivariate array.

RESTRICTIONS: As stated above, and all values must be floating point.

CALLING SEQUENCE: BVSPSA(Y,BA(XC),AZ(IC))
or BVSPDA(Y,BA(IC),AXZ(IC))

SUBROUTINE NAMES: BVTRN] or BVTRN2

PURPOSE: These subroutines construct a bivariate array of Y's versus
X and Z from an input bivariate array of 2's versus X and Y. BVTRN]
should be used when the Z values increase with increasing Y values and
BVIRNZ when the Z values decrease with increasing Y values.

RESTRICTIONS: The user must appropriately place the X and Z values and
spaces for Y's in the array to be constructed. These subroutines will
fill the Y spaces. The new array can differ in size from the old. Sub-
routine DIDEGl 1s called and its linear extrapolation feature applies.

CALLING SEQUENCE: BVTRN1 (BA@ (IC),BAN(IC))

or  BVTRN2 (BA@ (1C),BAR(IC))

88<
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SUBROUTINE NAMES: D2DEG1 or D2DEG2

PURPOSE: These subroutines perform bivariate linear and parabolic
interpolation respectively. The arrays msut be formated as showm for
Bivariate Array Format.

RESTRICTIONS: For D2DEG1 , N>2,M4>2 See Bivariate
for D2DEGZ , N>3,M>3 Array Format

CALLING SEQUENCE: DZPEGL(X,Y,BA(IC),Z)
or D2DEG2 (X,Y,BA(IC),Z)

SUBROUTINE NAMES: DZD1WM or D2D2WM

PURPOSE: These subroutines perform bivariate linear or pafabolic
interpolation by calling on D2DEGl or D2DEG2 respectively. The interpolated
answer is multiplied by the W value prior to being returned as Z.

RESTRICTIONS: Same as D2ZDEGl or D2DEGZ and W must be a floaring point
value.

CALLING SEQUENCE: D2D1WM(C, Y, BA(IC) , W, Z)

or D2D2WM{X,Y,BA(IC) ,W, Z)

SUBROUTINE NAMES: DZMXDI or D2MXAD2

PURPOSE: These subroutines are virtually identical to D2DEGl and D2DEG2
except that the arithmetic mean of two X values is used as the X
independent variable for interpolation.

RESTRICTIONS: Same as DZDEGl or D2DEG2.

CALLING SEQUENCE: D2MXD1 (X1,X2,Y,BA(IC),Z)
or . D2ZMXD2(XL,X2,Y,BA(IC),Z)

SUBROUTINE NAMES: - D2ZMXIM or D2MY2M

PURPOSE: These subroutines are virtually identical to D2DIWM and D2D?WM
except that the arithmetic mean of two X values is used as the X
independent variable for interpolation. ‘

RESTRICTIONS: Same as D2DIWM and D2D2WM.

CALLING SEQUENCE: D2MXIM(X1,X2,Y,BA(IC) ,W,2)
or DZMX2M(X1,X2,Y,BA(IC),HW,2)

99<
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'_;IRIVARIATE INTERPOLATION

TRIVARIATE ARRAY FORMAT T = £f(X,Y,2)

. Trivariate arrays may be thought of as two or more bivariate arrays, each
bivariate array a function of a third independent variable Z. Trivariate
" arrays must be input in row order and be constructed as follows:

IC,NX1,NY1,21,X 1,X2,X 3, . . . , XN
: Y1,T11,T12,T13, . . . , TIN
Y2,7T21,T22,723, . . . , T2N
YM,TM1,TM2,TM3, . . . , TMN
WX2,N¥2,22,%X 1,X2,X 3, « « » , X J
Y1,T11,T12,T13, . . . , TLJ
¥2,T21,T22,T23, « . . , T2J

YK, TK1,TK2,TK3, . . . , TKJ
-m,m-’z3, - L] - . - - L ] -

- - D e . - - - - . - -

. The trivariate arysy may consist of as many bivariate "sheets" as desired.
The number of X-amd ¥ walues in each sheet must be specified as integers
(MX-NY). The "sheets" must be rectangular and full but need not be

ddentiral in =mizse.

" SUBROUTINE NAMES: ' D3DEGL or D3D1WM

PURPOSE:

These subroutines perform trivariate linear interpolation. The interpola-
tion array must be constructed as shown for Trivariate Array Format.
Subroutine DZDEGl is called on which calls on DIDEGl. Hence, the linear
extrapolation feature of these routines applies. Subroutine D3D1WM
mzltiplies the interpolated answer by F prior to returning it as T.

RESTRICTIONS:

See Trivariaote fyray Format. F must be a floating point value.

TALLING . SEQUENCE : ~ D3DECL(X,Y,Z,TA(IC),T)
or . D3DIWM(X,Y,Z,TA(IC),F,T)

/00
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LINEAR EXTRAPOLATION

SUBROUTINE NAME: JTRATE

 PURPOSE:

Given two old guesses and their corresponding erveors, this routine linearly’™
extrapolates a new guess on the basis of zero error. '

The new guess and ervror are positioned in the old locations and the extra-’
polated new guess is returned in the new guess location.

RESTRICTIONS:

If the error function being plotted has changes of slope, the user must
insure that his guesses are quite accurate or divergence will be assured.

CALLING SEQUENCE:

ITRATE(E$,GP,EN,GN)

101?
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A.5 MATHEMATICAL SOLUTION SUBROUTINES

Area Integration

SMPINT Performs area integration by Simpson's rule and A.5-3
TRPZD trapezoidal rule using equal increments N
TRPZDA Performs area integration by the trapezoidal rule "

with non uniform increments

Functional Evaluation

CINSIN Obtains the sine function of an angle A.5-4
SINARY "
CINCPS Obtains the cosine function of an angle or array of "
CHSARY angles

CINTAN Obtains the tangent functions of an angle or array "
TANARY of angles "
ARCSIN Obtains the angle corresponding to a sine function A.5-5
ASNARY value or array of sine values "
ARCC¢S} Obtains the angle corresponding to a cosine function "
ACSARY value or array of cosine values ‘ "
ARCTAN} Obtains the angle corresponding to a tangent function "
ATNARY value of array of tangent values "
EXPNTL Performs exponential operations ' A.5-6
ARYEXP

EXPARY

L@GT Obtains the base 10 log function of a number or array "
LAGTAR of numbers ‘ "
LAGE Obtains the base e log function of a number or array "
LOGEAR of numbers :

Roots )
SQROPT Obtains the square root of a number or array of A.5-7
SQRATI numbers A "
CMPXSR Obtains the cbmplex square root of a complex number "
CSQRI or array of complex numbers i "
NEWTRT Utilizes Newton's method to obtain one root of a A.5-8
REWRT4 cubic or quartic equation ’ "

Polynomial/Simultaneous Linear Equations .
PLYNML} Calculates the value of the dependent‘variable for A.5-9

PLYARY an Nth order polynomial "
PLYAWM

SIMEQN Solves a set of linear equations (10 or less) by the "
' factorized inverse method

1_9&?351 |
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Curve Fit/Temperature Derivative

LSTsSQU Performs a least squares curve fit to an arbitrary A.5-10
number of X,Y pairs to yield a polynomial
equation of up to order 10

TDHT . Calculates the time point temperature derivatives
: for diffusion nodes

/03
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AREA INTEGRATION

SUBROUTINE NAMES: ‘ ' SMPINT or TRPZD

PURPOSE:

These subroutines perform area integratims by Simpson's rule and the
trapezoidal rule respectively. Simpson's rule requires that an odd
number of points be supplied. If an even number of points is supplied,
SMPINT will apply the trapezoidal rule to the last incremental area but
Simpson's rule elsewhere. The respective operations are:

A = DX&(Y1H4Y242YI+AY4L+, . .+IN) /3
or A= DX*(Y1+2Y2+2Y3+2Y4+...+YN)/2

RESTRICTIONS:

The DX increment must be uniform between all the Y points. All values
must be floating point except N which must be an integer.

CALLING SEQUENCE: SMPINT(N,DX,Y{DV),A) -
or TRPZD{N,DX,Y(DV),A)

SUBROUTINE NAME: TREZDA

PURPOSE:

This subroutine performs area integration by the trapezoidal rule. It.
should be used where the DX increment is not uniform between the Y
values but the corresponding X value for each Y value is known. The
operation performed is as follows:

A= -;- I (d-Xi-1)*(Yi+Yi-1) , 4 = 2,N

RESTRICTIONS:

All values must be floating point numbers except the array Iength RN
which must be an Iinteger, ' .

CALLING SEQUENCE: TRPZDA(N,X(DV) ,Y (DV) ,A)

104<
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SUBROUTINE NAMES: CINSIN or SINARY

PURPOSE:

These subroutines obtain the sine function of an angle or array of angles.
Their respective operations are:

A = sine (B)
or Ai = sine (Bi) s i=1,N d

RESTRICTIONS:

All angles must be In radians. All values must be floating point numbers
- except N which must be an integer.

CALLING SEQUENCE: CINSIN(B,A)
or SINARY(N,B(DV),A(DV))

SUBROUTINE NAMES: ) CINCPS or CPSARY

PURPOSE:

These subroutines obtain the cosine function of an angle or array of angles.
Their respective operations are:

A cosine {B)
A

or i = cosine (Bi) . i=1,N

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers
except the array length N which must be an integer. :

CALLING SEQUENCE: CINCﬁS(B,A)
or COSARY {N,B(DV),A(DV))

SUBROUTINE NAMES: CINTAN or TANARY
PURPOSE:
These subroutines obtain the tangent function of an angle or arraf of

angles. Their respective operations are:

A = tangent (B)
or Al = tangent (Bi) . i=1,N

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers
except the array length N which must be an integer.

CALLING SEQUENGE: CINTAN(B,A)
or  TANARY(N,B(DV),A(DV))

A.5-4
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FURCTIONAL EVALUATION

SUBROUTINE NAMES: ARCSIN or ASNARY

PURFPOSE:
These subroutines cobtain the angle corresponding to a sine function value
or array of sine values. Their respective operations are:

A = sine ~1(B)
or  Ai= sine “}(B1) , i=1,N

’

it

il

RESTRICTIONS:

The angles are returned in radianswith the following limits, -w/2<A<n/2.
All values must be fioating point except for the array length N which
must be an integer.

CALLIRG SEQUENCE: ARCSIN(B,A) or ASNARY(N,B(DV),A(DV))
SUBROUTINE NAMES: ARCC#S or ACSARY
PURPOSE:

These subroutines obtain the angle corresponding to a cosine function value
or axray of cosine values. Their respective operations are:

A = cosine:l(B}
or Al = cosine™(Bi) , i =1,N

RESTRICTIONS:

The angles are returned in radians with the following limits, 0 < A < 7.
All values must be floating point numbers except for the array length
H which must be an integer.

CALLING SEQUENCE: ARCCPS(B,A) or ACSARY(N,B(DV),A(DV))
SUBROUTINE NAMES: . ARCTAN or ATNARY
PURPOSE:

These subroutines obtain the angle corresponding to a tangent function
value of array of tangent values., Their respective operations are:

A = tangent™!(B)
or Ai = tangent”!(B{) , i.=1,N

" RESTRICTIONS:

The angles are returned in radians with the following limits, -n/2<A<u/2
All values must be floating point numbers except the array length N
which must be an integer.

CALLING SEQUENCE: ARCTAN(B,A) or ATNARY(N,B(DV),A(DV))

Ac 5-5
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SUBRQUTINE NAMES: _ EXPNTL or ARYEXP or EXPARY

PURPOSE:

These subroutines perform an exponential operation. Their respective
operations are:

A =B°c
or Al = Bi] , i=1,N
= pi%t | i=1,N

L. or Al
RESTRICTIONS: '

All values must be positive floating point numbers except N which must be
.an integer,
CALLING SEQUENCE: EXPNTL(C,B,A)

or ARYEXP (N, C,B(DV) ,A(DV))

or EXPARY (N, C(DV),B(DV),A(DV))

s

SUBROUTINE NAMES: L@GT or LPGTAR

PURPOSE:

These subroutines obtain the base 10 log function of a number or array of
numbers. Their respective operations are:

A = 10310(3)
or Al = 1log)o(Bi) ’ i=1,N

RESTRICTIONS:

All values must be positive floating point numbers except N which must be
an integer. _ : ;

CALLING SEQUENCE: LOGT(B,A)
or L@GTAR(N,B(DV),A(DV))

SUBROUTINE NAMES: LGGE or L@GEAR

PURPQSE:
These subroutines obtain the base e log function of a number or array of
numbers. Theilr respective operations are:

A = loge(B)
or Al = loge(Bi) ’ i=1,N

RESTRICTIONS:

All values must be positive floating point numbers except N which must be
an integer. .

CALLING SEQUENCE: LAGE (B, A)
or  L@GEAR{N,B{(DV),A(DV))

A.5-6 /07
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ROOTS S .
SUBROUTINE NAMES: SGREGT o SQRATI
PURPOSE:

These subroutines obtain the square root of a number or array of numbers
respectively. Their respective operations are: ’

A =+qfB

or . Al = +4JB1 1= 1,N

RESTRICTIONS:

The A ‘and B values must be floating point numbers. The N must be an integer.

CALLING SEQUENCE:  SQRPPT(B,A)
or  SQRATI(N,B(DV),A(DV))

SUBROUTINE NAMES: CMPXSR or CSQRI

PURPOSE:

These subroutines obtain the complex sqare root of a complex number or an
array of complex numbers respectively. Their respective operatlons are:

A + iB. = \}c + 1D s i= \[-1
or Al + 1Bj = \’Cj + iDj , = 1I,N

RESTRICTIONS:

All numbers must be floatﬁng point except N which must be an Integer.

CALLING SEQUENCE: CMPXSR(C,D,A,B)
or CSQRI(N,C(DV),D(DV);A(DV),B(DV))

. 1C8<
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ROOTS

SUBROUTINE NAMES: NEWTRT _or NEWRT4

PURPOSE:

These subroutines utilize Newton's method to obtain one root of a cubic,

or quartic equation respectively. The root must be in the neighborhood

of the supplied initial guess and up to 100 iterations are performed in
order to obtain an answer within the specified tolerance. If the tolerance
is not met, an answer of 1038 is returned. The respective equations are:

£(X)
or g(X)

AT+AZ*X+AI*X2+AL4*X3 = 0. 04T
AT+AZEXHAZ KX 2 HAG*XIHASHXY = 0.0+T

[

where X starts as the initial guess RI and finicshes as the final answer
RF, T is the tolerance. .

RESTRICTIONS:

All data values must be floating point numbers.

CALLING SEQUENCE: NEWIRT(A(DV),T,RI,RF)
or NEWRT4 (A(DV}),T,RI,RF)

109<
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POLYNOMIAL/SIMULTANEOUS LINEAR EQUATIONS

SUBROUTINE NAMES: PLYNML or PLYARY or FLYAWM

PURPOSE:
These subroutines caleulate Y from the following polynomial equation:

ATHA2*XHAIFK2 ALK+ ... +ANFLRXD
Y+

|| I}

Y
Z

The number of terms is variable but all the A co=fficients must be input no
matter what their value.

RESTRICTIONS:

All values must be floating point numbers except for the degree of polynomial
N which must be Integer. -
CALLING SEQUENCE: PLYNML(X,AL,A2,A3,...,AN,Y)

or PLYARY (N,X,A(DV),Y)

or PLYAWM(N,X,A{(DV) ,W,Z)

SUBROUTINE NAME: SIMEQN

PURPCSE:

This subroutine solves a set of up to 10 linear simultaneocus equations by
the factorized inverse method. The problem size and all input and output
values are communicated as a single specially formatted positive input
array. The array argument must address the matrix order (N} which is input
by the user. The first data value must be the integer order of the set (or
size of the square matrix) followed by the coefficient matrix [A] in column
order, the boundary vector {B} and space for the solution of vector {S} .

1 {sp = {5}

RESTRICTIONS:

The integer count and matrix size must be integers, all other values must
be floating point. The coefficient matrix is not modified by SIMEQN.
Hence, changes to {B} only allow additional sclutions to be easily
obtained. ' '

CALLING SEQUENCE: SIMEQN (A(R))

where the array is formatted exactly as follows:

I1C,N,A(1,1),A(1,2),...A(N,N),B1,...,BN,S1,...,8KN

110<
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. LURVE F1T/TEMPERATURE DERIVATIVE

SUBROUTINE NAME: LSTSQU
PURPOSE:

This subroutine performs a least squares curve to fit to an arbitrary
number of X, Y pairs to yield a polynomial equation of up to order 10,
Rather than using a double precision matrix inverse, this subroutine calls
on the subroutine SIMEQN to obtain a simultaneocus solution.

RESTRICTIONS:

A1l values must bz floating point numbers except N and M which must be

. -integers. N is the order of the polynominal desired and is one less
than the number of coefficients desired. M is the array length of the
Andependent X or dependent Y values. -

CALLING SEQUENCE: ’ LSTSQU (N, M,X(DV),Y(DV),A(DV))

*This subroutime Tequires 2*M dynamic storage core locations.

“SUBROUTINE NAWME: . TDPHT
PURPOSE:

This subroutine allows the user to calculate the time point temperature
- derivatives for diffusion nodes. The single argument must address an
_array with as many locations as there are diffusion nodes; the answers
“are returned in relative order. The routine utilizes the pseudo-compute
sequence to calculate the time peint net q into the nodes and then divides
by the nodal capacitances. Consequently, the user may multiply the
temperature derivatives by the nodal capacitance to obtain the nodal net q.

RESTRICTIONS:

Do not call zits subroutine from Variables 1. The long peeudo-compute
sequence is Tequired.

 CALLING SEQUENCE: TDPT (A (DV))




A.6 MATRIX SUBROUTIRES *

TERY sysrems

‘Input Format . AEQONDO BEATH, CALIFORNIA

Unless otherwise noted, the matrices require input as positive num—
bered arrays with integer number of rows and columns as the first tvo
data values followed by floating point element values in xow ordex.

Special Matrix Generation ‘ : ) Page
ZER¢ Ceperates a matrix such that every element is zero A.Gnﬁ
@NES Cenerates a matrix such that every element is one ’ "
UNITY Generates a square matrix such that the principal o

diagonal elements are unity and the remaining
elements are zero

SIGHMA Generates a square matrix such that all elements on "

and below the principal diagonal are unity and the
remaining elements are zero

GENALP Cenerates a matrix such that every element is equal "
to a constant

GENCHL Generates a column matrix such that the first element "

‘ is equal to X1 and the last element is equal to X2

FULSYM Forms a half symmetric matrix from a full square A.6~53
matrix .

SYMFUL Forms a full square matrix from a half symmetric "
matrix

SYMFRC Forces symmetry upon a square matrix ' "

DIAG Foxrms a full square matrix given a columm or row i
matrix

UNDIAG Forms a row matrix from the diagonal elements of a "

square matrix

DIAGAD Adds the elements of a row matrix to the diagonal "
elements of a square matrix

Elementa)l Operations

ELEADD Adds corresponding elements of two matrices [A] & [B] A.6-6

to form a third [Z] (Matrix addition)
ELESUB Subtracts the corresponding elements of two matrices oo

to form a third [2) (Matrix subtractiom)

ELEMUL Multiplies the corresponding elements of two "
: : matrices [A] & [B] to form a third {Z]. (This is
NOT matrix multiplication)

ELEDIV Divides the corresponding elements of two [A] & [B] .

g matrices to form a third [Z]). (This is NOT matrix
‘ division)
. ELEINV Obtains the reciprocal of each element of matrix [A] "

and place it in the corresponding location of
another matrix [Z]

EFSIN Generates the sine of each element of matrix [A] and  A.6~7
. places it in the corresponding location of another
matrix [Z]

a6y 1HE<



EFASN

EFC@S

EFACS

EFTAN

EFATN

EFAES

EFL@G
EFSQR
EFEXP
EFP@W
. ADDALP
ALPHAA
MATRIX
SCALAR

MATADD

Ty sysreeas
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Generates the arcsine of each element of matvix {A]
and places it In the corresponding location of
apother matrix [Z]

Generates the cosine of each element of matrix [A] and
places it in the corresponding location of another
matrix [Z]

Generates the arcosine of each element of matrix [A]
and places it in the corresponding location of °
another matrix [Z)

Generates the tangent of each element of matrix [A]
and places it in the corresponding location of
another matrix [Z]

Generates the arctangent of each element of matrix (4]
amd places it in the corre5pond1ng location of
another matrix [Z]

Generates the absolute value of each matrix [A]
element

Generates the natural log of each matrixz [A] element
Generates the sguare root of each matrix [A] element
Generates the exponential of eaqh matrix [A] element
Generates the power of each matrix [A] element

Adds & constant to every element in a matrix

Multiplies every element in a matrix by a constant

Allows a constant to replace a specific matrix element

Allows a specific matrix element to be placed intc a
constant location

Adds a constant to a specific matrix element

Matrix Operatiemns/Seclutions

INVRSE
MULT
TRANS
AAEBB
BTAR
BABT
DISAS

ASSMBL

Inverts a square matrix
Multiplies two conformable matrices
Forus the transpose [Z] from matrix [A]

Sums two scaled matrices

-Performs the matrix operation [B]t [A][B] ©e

Performs the matrix operatlon [B][A][B]

Allows a user to operate on matrices in a partitioned
manner by disassembling a submatrix [Z] from a
parent matrix [A]

Allows a user to operate on matrices in a partitioned
manner by assembling a submatrix [Z] into a parent
matrix [A]

A6-2 441 3<
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CHAIMLT Multiplies each element in a column or row of matrix h,6-12
ROWMLT [A] by its corresponding element from the diagonal
: matrix [V] which is stored as a vector

SHIFT Moves an entire matirx as is from one leocation to A.6-13
another

REFLCT Moves an entire matrix with the order of the column "
elements reversed from one location to another :

SHUFL Allows the user to reorder the size of a matrix of a "
matrix as long as the total number of elements
remains unchanged

CALMAX Searches an input matrix to obtain the maximum or "

CHLMIN minimum values within each column

SYMREM} Allows the SINDA user to operate on a simple row/column A,6-14

SYMREP of a half symmetric matrix

SYMDAD Adds the elements of a vector array to the corresponding "
elements of the main diagonal of a half symmetric
matrix

SYMIV Obtains the inverse of a half symmetric matrix "

POIMLT Multiplies a given number of nth order polynomial A.6-15
coefficients by &4 similar number of mth order
polynomial coefficients

PALVAL Evaluates the polynomial for the input complex number "
X + i¥, given a set of polynomial coefficients

PLYEVL Evaluates each polynomial for each X value, given a "
matrix with nth order polynomial coefficients and
a colum matrix of X values .

PALSAV Calculates the complex roots, given a set of polynomial "
coefficients as the first row in a matrix

JAC@BI Determines the eigenvalues and eigenvector associated A.6-16
with an input matrix [A]

Store and Recall

CALL Retrieves matrices on magnetic tape A.6-17

FILE Stores matrices on magnetic tape "

ENDM@P Used in conjunction with subroutines CALL and FILE. "
Causes all matrices from the logical 12 tape to be
updated onto the logical 13 tape ’

LSTAPE Will output the name, problem number and size of every "
matrix stored on tape on logical 13

Applications

M@PDES Solves a particular matTix dynamic vibration equation  A.6-18

MASS Generates an inertia matrix of a dynamic vibration A.6-19

' system described in terms of deflections and rotations

STIFF Generates a stiffness matrix for a dynamic vibration A.6-20

system described in terms of deflections and rotations

AG-3 1‘1_4<
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SUBROUTINE NAMES: ) _ ZERF or @NES

PURPOSE: These subroutines generate a matrix [Z] such that every element
is zero or one respectively. :

RESTRICTIONS: The matrix to be generated must contain exactly enough
Space in addition to having the integer number of rows and columms as the
first two data values. The NR and NC arguments are the integer number of
rows and columns respectively.

CALLING SEQUENCE: ZER® (NR,NC, Z(IC))
or  PNES(NR,NC,Z(IC))

SUBROUTINE NAMES: | UNITY or SIGMA

PURPOSE: These are square matrix generation subroutines. UNITY generates
a square matrix such that the main diagonal elements are one and all other
elements are zero. SIGMA generates a square matrix such that all elements
on and below the main diagonal are one and the remaining elements are zero.

- RESTRICTIONS: The matrix {2} to be generated must contain exactly enough
space in addition to having the integer number of rows and columms as the
first two data values. The integer number of rows and columms are equal and
myust be input as the argument N.

CALLING SEQUENCE: UNITY (N, Z(IC))
or SIGMA(N,Z(IC))

SUBROUTINE NAMES: GENALP or GENC@L

PURPOSE: These are special matrix generation subroutines. GENALP will
generate a matrix such that every element is equal to a constant C. GENC@L
will generate a column matrix such that the first element is equal to X1 and
the last element is equal to X2. The intermediate elements receive equally
incremented values such that a linear relationship is established between
row number and element value.

RESTRICTIONS: The NR and NC arguments refer to the integer number of rows
“and columns respectively. X1, X2 and C must be floating point values. The
generated matrices must contain exactly enough space in addition to having

the integer number of rows and columns as the first two data values.

CALLING SEQUENCE: GENALP {NR,NC,C,Z{IC))
or GENCOL(X1,X2 ,NR,Z(IC))
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SPECI—AL MATRIX FURMULATION. PEDONDO BEAT M, CaLlkDARA

SUBROUTINE NAMES: . FULSYM or SYMFUL

These subroutines allow the SINDA user to form a half symmetric matrix from a
full square matrix or form a full square matrix from a half symmetric matrix,
respectively., The arguments must address the matrix array integer count set
by the preprocessor, the array lengths must be exact.

RESTRICTIONS:

The half'symmetric matrix must be formatted as shown on page A,s—gvand the
full square matrix must be formatted as described on page A.6-1 of this

document.
CALLING SEQUENCE: ' FULSYM (FM(IC),SM(IC))
or SYMFUL (SM(1C) ,FM(IC))
Where FM 1is the full matrix and SM is the symmetric matrix.

Ll

SUBROUTINE NAME: ; SYMFRC

PURPOSE:

This subroutine may be used to force symmetry upon a square matrix. The
main diagonal elements are untouched and all others are treated as follows:

X = (aij + aji)IZ.O; aij

=xj; a, =X

3i

RESTRICTIONS:

The addressed matrix must be square and formatted as described on page

CALLING SEQUENCE: ~ SYMFRC(A(IC))
SUBROUTINE NAMES: DIAC or UNDIAG or DIAGAD
PURPOSE:

Given a 1*N or N*1 matrix [V], subroutine DIAG forms a full square N*N
matrix [Z]. The [V] values are placed sequentially on the main diagonal
of [Z]) and all off diagonal elements are set to zero. Subroutine UNDIAG
forms a 1*N matrix [V] from the diagonal elements of an N*N matrix [Z].
Subroutine DIAGAD adds the elements of a 1*N matrix [V] to the diagomnal
elements of an N*N matrix [Z].

RESTRICTIONS:

Both matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: DIAG(V(IC),Z(IC))
or  UNDIAG(Z(IC),V(IC))
or  DIAGAD(V(IC),Z(IC))

A.6~5
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S HELONOO BEACH. CALIFORNIA

SUBROUTINE NAMES: . FLEADD or KLESUB

PURPOSE: These subroutines add or subtract the corresponding elements of
two matrices respectively. '

m¥*n wmin : m¥*n : '

(z3 = 1Al % 1Bl ., zgy o= ey E by
RESTRICTIONS: All matrices must be of identical size and have the integer
number of rows and columns as the first two data values., The [Z] matrix
may be cverlayed into the {A] or [B] matrix.

¢ALLING SEQUENCE: ELEADD{A(IC),B(IC),Z(1C))
or ELESUB(A(IC),B(IC),Z(IC))

SUBROUTINES NAMES: ' ELEMUL or ELEDIV

ET

PURPOSF: These subroutines multiply ox divide the corresponding elements
of two matrices respectively. K

mn m*n _ m*n
yA *® = *
RESTRICTIONS:  All matrices must be of identical size and have the integer
aumber of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the {a] or [B) matrix.

CALLING SEQUENCE: ELEMUL (A (IC),B(IC),2(IC))
ox ELEDIV(A(IC),B(IC),Z2(IC))

SUBROUTINE NAME: . ELEINV

PURPOSE: This subroutine obtains the reciprocal of each element of the A
matrix ahd places it in the corrresponding element location of the [Z]
matrix. .

zij = l.Olaij
RESTRICTIONS: The matrices must be of identical size and have the integer
number of rows and columns as the first two data values, The [Z] matrix
may be overlayed into the [A] matrix.

CALLING SEQUENCE: ELEINV(A(IC),Z(IC))

11.‘7< :
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SUBROUTINE HAMES: EFSIN or FEFASHN
PURPOSE: These subroutines perform elementar} lunctlons on all of the [A]

matrix elements as follows:

. = arcsine(a

13 13 13 @yy)

RESTRICTIONS: The matrices must be identical in size and have the 1nteger
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix.

2,, = bln(a ) or z

CALLING SEQUENCE: ‘ EFSIN(A(IC),Z(IC))
or EFASN(A(IC),Z2(IC))

SUBROUTINE NAMES: S EFCfS or EFACS

PURPOSE: These subroutines perform elementary functions on all of the [A]
matrix elements as follows:

zij = c051ne(aij) or aij = arecosine(aij)
RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. -The [Z] matrix
may be overlayed into the [A] matrix.

CALLING SEQUENCE: - EFCPS (A{IC),Z(IC))
or  -EFACS(A(IC),Z(IC))

SUBROUTINE NAMES: . EFTAN or EFATN

PURPOSE: These subrOutlnes perform elementary function on all of the [A]
matrix elements as follows: ]
z., = tangent a ) or . z,, = arctangent(a_,
3y T rangent iy gent(ayy)
RESTRICTIONS: The matrices must be of identical size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix. ,

CALLING SEQUENCE: EFTAN(A(IC),Z(IC)) o
or EFATN (A(IC),2(1C))

118<
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ELEMENTAL OPERATIONS

SUBROUTINE NAMES: EFABS or EFL$G or EFSQR
PURPOSE: These subroutines perform elementary functions on all of the

[A] matrix elements as follows respectively:
= - - =
24y = lagl 13 7 108e(ayy)  or oz = Ay
RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. All in the {A]
- matrix must be positive for EFL$G or EFS5QR.

or z

CALLING SEQUENCE: EFABS (A(IC),Z(IC))
EFL@G (A(IC),Z(IC))
EFSQR(A(IC),Z(IC))" ,
SUBROUTINE NAMES: EFEXP or EFPPW

PURPOSE: These subroutines perform elementary functions on all of the [A]
matrix elements as follows:

a a
zij = %14 or zij = aij
RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix. The exponent o may be an integer or
floating point number. However, if any elements in [A] are negative then
a must be an integer. :

CALLING SEQUENCE: EFEXP(A(IC),Z(IC))
or EFP@W(A(IC) ,a,Z(1IC))

9
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ELEMENTAL OPERATIONS

SUBROUTINE NAMES: | ' 'ADDALP or ALPHAA
'PURPOSE: g

To a2dd a constant to or multiply a constant times every element in a
matrix.

z = C*a

g w L+ a ‘“ 'i_j,

137 ¢ 1 or

RESTRICTION?:

The matrices must have exactly enough space and contain the integer
aurber of rows and columns as the first two data values. C and all
clements must be floatlng point numbers. The [Z] matrix may be over—

CALLING SEQUENCE: ADDALP(C,A(IC,Z{IC))
or ALPHAA(C,A(IC),Z(IC))

" SUBROUTINE NAMES: | MATRIX or SCALAR op MATADD

PURPOSE: The subroutine MATRIX allows a constant to replace a specific
matyix element, subroutine SCALAR allows a specific matrix element to be
placed into a constant location, and subroutine MATADD adds a comstant to
a specific matrix element. The integers I and J de51gnate the row and ]
column position of the specific element.

z,,=C or z. =2

11 oF CmEy 0P By Tyt
RESIRICTIONS: The matrix must have the integer number of rows and columns
as the first two data values. Checks are made to insure that the
identified element is within the matrix boundaries.

CALLING SEQUENCE:  MATRIX(C,I,J,Z{IC))
or  SCALAR(Z(IC),I,J,C)
‘or  MATADD(C,I,J,Z(IC))

120<
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MATRIX QPERATIONS AND SOLUTIONS FEQQNDO0 BEASH. CALEORNA

SUBROUTINE NAME: INVRSHE

PURPOSE: To invert a square matrix.

n¥p nen n*n_l
given [A] s [z} = [A] .
RESTRICTIONS: The matrices must be square, identical in size and contain

the integer number of rows and columns as the first two data values. The
output matrix [Z] may be overlayed into the [A] matrix. :

CALLING SEQUENCE: INVRSE(A(IC),Z(IC))
NOTE: This subroutine requires n dynamic storage allocations.
SUBROUTINE NAME: MULT

PURPOSE: To multiply two, conformable matrices together,

m¥*n m¥Ep p¥*n

(z}. = [A] [B] s

. = %
%33 ik bkj

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.
If [A] and [B] are square, [Z] may be overlayed into either of them.

CALLING SEQUENCE: MULT(A(IC),B(IC),Z(IC))

NOTE: This subroutine requires n*m dynamic storage locations.
SUBROUTINE NAME: + TRANS

PURPOSE: . .

Given a matrix [A) form its transpose as [Z]

RESTRICTIONS: Both matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.
The cutput matrix [Z] may be ovgrlayed into the [A] matrix.

CALLING SEQUENCE: TRANS (A(IC),Z(IC))

NOTE: This subroutine requires n*m dynamic storage locations.
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HEDIDNDID BEACH, CALIFOGRAA

MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME: AABEB

PURPOSE:

To sum two scaled matrices:

m*n S mn ‘ m¥*n ‘ ‘
. - , . = 0% %
| | ‘FZ] ClFA} + C2[B] ' 25 cl a;s + cz=bij
RESTRICTIONS:

All matrices must be of identical size, contain exactly enough space
and contain the integer number of rows and columns as the first two
data values. The output matrix [Z] may be overlayed into either of
the 1nput matrices, .

CALLING SEQUENCE: . AABB(C1,A(IC),C2,B{(IC),Z(IC))
SUBROUTINE NAMES: ..+ .. BTAB or BART
PURPOSE:

Tc perform the following matrix operations, respectively:

.‘n*m n*mt m*m m*m

{2} = B} {A] [B]

‘ m*m m¥n n¥n n*m
or- fz1 = [B] . [a (8

RESTRICTIONS:

The matrices must be conformable, contain exactly enough space and
contain the integer number of rows and colums as the first two data
values. Subroutines MULT and TRANS are called on.

CALLING SEQUENCE: BTAB(A(IC),B(IC),Z(IC))
Cor  BABT(A{IC),B(IC),Z(IC))

NOTE: Due to subroutines MULT and TRANS this subroutine temporarlly
requires 2*m*n+6 dynamic storage locatioms. ¥

122<
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAMES: DISAS or ASSMBL
- PURPOSE:

These subroutines allow a user to operate on matrices in a partitioned
manner by disassembling a submatrix [Z) from a parent matrix [A] or
assembling a submatrix [Z] into a parent matrix [A].

RESTRICTIONS:

" The I snd J axrguments are integers which identify (by row and column
number respectively) the upper left hand corner position of the sub-
matrix withiam the parent matrix. All matrices must have exactly enough
space and contain the integer number of rows and columms as the first
two data values. The NR and NC arguments are the integer number of
Tows énd columns respectively of the disassembled submatrix., If the
submatrix exceeds the bounds of the parent matrix an appropriate error
message is writrten and the program terminated.

" _CALLING SEUUENCE: DISAS(A(IC),1,J,NR,NC,Z(IC))
or  ASSMBL(Z(IC),I,J,A(IC))

SUBROUTINE NAMES: CHIMLT or RPWMLT

PURPOSE:

" To multiply each element in a column or row of matrix [A] by its
corresponding element from the matrix [V] which is conceptually a
diagonal matrix but stored as a vector; i.e., 1*N or N*] matrix. The
matyix [Z] is the product.

 RESTRICTIONS:

. The matrices must have exactly enough space and contain the integer
- mumber of xews and columns as the first two data values. The matrices
being multipiied must be conformable.
. LALLYNG SEQUENCE: CALMLT (A(IC),V(IC),Z(IC))
or RPWMLT (V(IC),A(IC),Z(IC))

/23
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RECORNOO GYACH, CALFORMA

MATRIX OPERATIONS AND SOLUTIONS

' *
SUBROUTINE NAMES: : SEIFT or REFLCT

PURFQOSE: These subroutines may be used to move an entire matrix from one

. location to another SHIFT moves the matrix exactly as is and REFLCT moves
“"4¢ and reverses the order of the elements within each column. The last

element in each column becomes the first and the first becomes the last, etc.

RESTRICTIONS: The matrices must be of identical size and the integer
number of rows and columns must be the first two data values. The [Z]
matrix may be overlayed into the [A] matrix.

CALLING SEQUENCE: SHIFT(A(IC),Z(IC))
or REFLCT(A(IC),Z(IC))

*REFLCT uses three dynamic storage locations plus an additional one for
each row. ' :

SUBROUTINE NAME: SHUFL

PURPOSE: This subroutine allows the user to reorder the size of a matrix
as long as the total number of elements remains unchanged. The row orderx
input matrix [A)} 1s transposed to achieve column order and then reformed
as a vector by sequencing the columns in ascending order. This vector is
then reformed into a column order matrix by taking a column at a time
sequentially from the vector. The newly formed column matrix is then
transposed and output as the row order matrix [Z]. :

RESTRICTIONS: The matrices must be identical in size and have their
respective integer number of rows and columns as the first twe data values.
The number of rows times columns for [A] must equal the number of rows
times columns of [Z].

CALLING SEQUENCE: SHUFL(A(IC),Z{IC})
SUBROUTINE NAMES: CPIMAX or CPIMIN

PURPOSE: These subroutines search anm input matrix te obtain the maximum or
minimum values within each column respectively. These valués are output as
a single row matrix [A] having as many columms as the input matrix [A].

RESTRICTIONS: Each matrix must have its integer number of rows and columms
as the first two data values. . :

CALLING SEQUENCE: CPLMAX (A(IC),Z(IC))
' or  CPIMIN(A(IC),Z(IC))

424<
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAMES: : SYMREM or SYMREP

PURPOSE:

These subroutines allow the SINDA user to operate on a single row/column of
a half symmetric matrix. SYMREM will remove a particular row/column from
the half symmetric matrix and place it into an array of the exact length

to hold it. SYMREP will take an array and replace it into a specific row/
column of the half symmetric matrix.

RESTRICTIONS:

The half symmetric matrix must be formatted as shown on page A-8'8-7The
jpr: ter K must designate the row/column to be operated on. If K is an
inte;er zero the main diagonal will be removed or replaced.

CALLING SEQUENCE: SYMREM(X, SM(IC),A(IC))

or SYMREP (K,A(IC),SM(IC))

SUBROUTTNE NAME: SYMDAD

PURPOSE:
This subroutine will add the elements of a vector array to the corresponding
elements of the main diagonal of a half symmetric matrix, If any sum of the

elements is less than zero they are set to zero.

RESTRICTIONS:

The half symetric matrix must be formatted as shown on page A.8-8. The
vector array must be input as a positive array and be the same length as
the matrix order.

CALLING SEQUENCE: SYMDAD (VA (IC),SM(IC))

SUBROUTINE NAME: SYMINV
PURPOSE;:

This subroutine obtains the inverse of a half symmetric matrix which is also
symmetric and returns it in the same area as the input matrix. This subroutine
is called internally by subroutines SCRPFA, IRRADI and SLRADI.

RESTRICTIONS:

This subroutine contains no error checks, exercise extreme caution when using it.

CALLING SEQUENCE: SYMINU(A(DV),N)

where A(DV) addresses the 1,1 element and N is the matrix order.

1235<
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REDDMOC BEATH, CALIFORNIA

SUBRDUTINE NAME: PULMLT

PURPOSE: This subroutine performs the multiplication of a given number of
nth order polynomial coefficients by a similar number of nth order poiy-
nomial coefficients. The polynomials must be input as matrices with the
number of rows equal and each row receives the following operation.

(cl’czsc3s---ack) = (alsazs"‘lan) * (bl,bz,..,bm),ka'h‘l“’l

RESTRICTIONS: The matrices must have exactly enough space and contain
thelr integer number of rows and columns as the first two data values.

CALLING SEQUENCE: PPIMLT(A(IC),B(IC),C(IC))

 SUBROUTINE NAME: PPLVAL

PURPOSE: Given a set of pclynomial coefficients as the first row of matrix
[A], this subroutine evaluates the polynomial for the input complex numbey
¥+i¥. The answer is returned as U+diV.

RESTRICTIONS: [A] may be m*n but only the first row Is evaluated.

CALLING SEQUENCE: PPLVAL(A(IC),X,Y,U,V)
_SUBROUTINE RAME: PLYEVL

PURPOSE: Given a matrix [A] containing an arbitrary number NRA of the nth
order polynomial coefficients and a column matrix [X] containing an arbitrary
number of NRX of x values, this subroutine evaluates each polynomial for X
value. The answers are output as a matrix [Z] of size NRX*NRA. Each set

of polynomial coefficients in [A] is a row in ascending order. An x value
evaluated for the polynomial creates a row in [Z] where the column number
agrees with the polynomial row number.

RESTRICTIONS: The matrices must have exactly enough space and contain
thelr integer number of rows and columns as the first two data values.

CALLING SEQUENCE: " PLYEVL(A(IC),X(IC),Z(IC))

SUBROUTINE NAME: ) POLSEV

PURPOSE: Given a set of polynomial coefficients as the first row in
matrix [A], size (m,n+l), this subroutine calculates the complex roots
which are returned as matrix [Z], size (n,2)}. Columm 1 contains the real
part and column 2 imaginaxy part of the roots.

RESTRICTIONS: This subroutine presently is limited to n = 20. It
internally calls on RTP@LY and utilizes some double precision.

CALLING SEQUENCE: PPLSPHV(A(IC),Z(IC))

1Z26<
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HATRlx OPERATIONS AND SOLUTIONS ' HEDOMNDO BEACH, CALIFORNIA

- SUBROUTINE NAME: JACPBI

PURPOSE:

This subroutine will find the eigenvalues [E] and eigenvector matrix [Z]
associated with an input matrix [A].

n*n n*n n*n n*n

{A) [z] = [2] [E]

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Note that
matrix [E] is a diagonal matrix but is stated as a vector.

CALLING SEQUENCE: ; JACPBI(A(IC),E(IC),Z(1IC))

NOTE: This subroutine requires 2*n*n+6 dynamic storage locatioms.

2T
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STORE AND RECALL

MATRIX DATA STGRAGCE AND RETRIEVAL

Thé ability to store and retrieve matrices from tape is easily achieved
through the use of the FILE and CALL subréutines. Matrices are identified
by an dlphanumeric name, integer problem number and the core address of or
for the matrix: The CALL subroutine searches the matrix storage tape on
logical 13 and brings the desired matrix into core. The FILE subroutine
writes a matrix onte the logical 12 tape. Subroutine ENDM@P causes all
matrices from the logical 12 tape to be updated onto the logical 13 tape.
in case of duplicate matrices, the one from logical 12 replaces the one on
logical 13. A matrixz which has been filed camnot be called until an
ENDM@P operation has been perfermed. To create a new tape the user merely
sets contro)l constant NPCPPY nonzero and has a scrateh tape mounted on
loglcal 13. The user should check the section on contrel cards and deck
‘setup to determine control .card requirements. (Appendix E) -

SUBROUTINE NAMES: - CALL or FILE
PURPOSE:

To allow the user to retrieve or store matrices on magnetic tape, see above
The H argument must be a six character alphanumeric word and N must be an
integer number, both of which are used to identify the matrix.

RESTRICTIONS:

See above. The matrix must have exactly enough spéce and contain the
integer number of rows and columns as the first two data values,

CALLING SEQUENCE: CALL (H,N,A(IC))
or FILE(A(IC),H,N)

SUBROUTINE NAMES: ' ENDMJF or LSTAPE
PURPOSE:

Subroutine ENDMPP should be used in conjunction with subroutines CALL and
FILE; see above. It causes matrices which have been filed by FILE on
logical 12 to be updated onto Jogical 13. A call to subroutine LSTAPE will
causeé the output of the name; problem number and size of every matrix stored
oh tape on logical 13.

RESTRICTIONS: See above.

CALLING. SFEQUENCE: ENDM@P
' or = LSTAPE

128<
A.6-17



TR Y svsreems

RECOMNOD GEACKH, CALIFDAMNIA

APPLICATION -~ DYNAMIC VIERATION

SUBROUTIRE NAME: . . M@DES

PURPOSE:
This subroutine solves the following dynamic vibration equation

n*n n*n n#*n n*n n¥*n
TSI 8] [z [ 1 ]
| 7

where fA] is the input inertia matrix assoclated with the kinetic energy
and [B} is the input stiffness matrix associated with the strain energy.
[Z]) is the output eigenvector matrix associated with the frequencies of

vibration W, which are output in radians/sec as [R] and in eyclesfsec as
(€], both [ﬁ] and [C] are n*n diagonal matrices but stored as vectors.

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Subroutine
JACPBT 'is called on.

CALLING SEQUENCE: M@DES (A{IC),B(IC),Z(IC),R(IC),C(IC))

NOTE: This subroutine requires 3*n*n+9 dynamic storage locations.

129<
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REQONOG BEACH, CALIEDAMMNA

APPLICATION - DYNAMIC VIBRATION

SUBROUTINE KAME: MASS

PURPOSE:

If a dynamic vibratlion problem is referred to a set of coordinates con-
sisting of the deflections,ci, and the rotations,0y, at N collocation
points along the beam under consideration, then this subroutine generates
the 2ZN by 2N inertia matrix [A] which appears in the following expression
for kinetic energy:

Te i 88,06 1A g

RESTRICTIONS:

.The mass and inertia data input to this subroutine are to be supplied as
piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determines the ultimate size, 2N by 2N, of the output
inertia matrix, is also chosen arbitrarily.

CALLING SEQUENCE: MASS (X(IC),DMPL(IC),RIPL(IC),CM(IC),A(IC))
where X is the matrix (N X 1) of collocation points referred to an

arbitrary origin.
DMPL is the matrix(NDM X 4) of distributed mass per unit length
' slices, where .
€Col 1 is the location of the rear of a siice.
Col 2 is the location of the front of a slice.
Col 3 is the mass value at the rear of the slice.
Col 4 is the mass value at the front of the slice.
RIPL is the matrix (NRI X 4) of distributed rotary inertia per unit
length slices. The colums here are similar to DMPL.
CcM is the matrix (NCM X 4)of concentrated mass items, where
Col 1 is the attach point location for each item.
Col 2 is the mass at this location.
Col 3 is the location of its center of gravity.
Cecl 4 is the moment of inertia about the C. of G.
A is the output (2N X 2N} inertia matrix.

NOTE: Having application to DMPL, RIPL and CM, it is noted that the locationm

of the values may not go beyond the limits of the collocation points in
either direction.
: 130<
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HEGDINDD BEALH, CALIFORMNA

APPLICATION -~ DYNAMIC VIBRATION

SUEROUTINE NAME: STIFF
PURPOSE:

If a dynamic vibration problem is referred to a set of coordinates con-
silsting of the deflections,z;, and the rotatioms, €;, at N collocation
points along the beam under consideration,then this subroutine generates
the 2N by 2N stiffness matrix [K] which appears in the following expression
for the strain energy: .

U = %— {;1...;n61...9n} K] |z,

F .

RESTRICTIONS:

The stiffness and shear data input to this subroutine are to be supplied
as piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determine the ultimate size, 2N by 2N, of the output
stiffness matrix, is also chosen arbitrarily.

CALLING SEQUENCE: STIFF(X(IC),EI(IC),GA(IC),K(IC))

where X is the matrix (N'X 1) of collocation points referred to an

arbitrary origin. »

EI is the matrix (NEI X 4) of bending stiffness slices, where
Col 1 is the location of the rear of a slice.
Col 2 1s the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.
Col 4 is the stiffness value at the front of a slice. _

GA is the matrix (NGA X 4) of shear stiffness slices, where
the columns here are similar to those for the EI distribution.

K is the output stiffness matrix size 2N by 2N.

NQTE: Having application to EI and GA, it is noted that the location of

the values may not go beyond the limits of the collocation points in
either direction.

I3
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A.7 OUTPUT SUBROUTINES

' Data Input and Temperature Printout

GPRINT} Causes the printout of all conductor values or heat A.7<3

QFPRNT flow rates through conductors ,
TPRINT Causes the printout of all nodal temperatures, ali "
CPRINT capacitance values, all impressed heating rates "
QIPRNT or all net heat rates for the nodal network umder n
QNPRNT consideration _ : : "
" Rumerical Differencing Characteristics Printout
STNDRD Causes a line of output to be printed giving present A 74
: time, last time step used, most recent CSGMIH,
maximum diffusion change calculated over the last |
time step and maximum relaxation calculiated over
the last iteration -
PRNTMP Calls on STNDRD and also lists temperature of every n.
node in the network according to relative node
number
Floating Point
PRINT } Allows individual floating point numbers fo be. n
PRINTL printed for reference temperature, capacitance, n
’ etc- ¥ )
Array Printout
PRINTA Allows the user to printout an array of values five  A.7-5
to the line . - :
PRNTMA Allows the user to print up to 10 arrays in a W
column format o
PUNCHA Enables a user to punch out an array of data values A.7-6
in any desired format .
PNCHMA Similar to PUNCHA but up te 10 equal lehgth arrays "
of data values may be punched
Plot Package
PLOTX] S - " AT
PLOTX2 - . _ "
PLATL1 Call upon a large package of undocumented "o
PLATL2 subroutines specifically for the SC-4060 . "
PLTX3 . - A.7~B
PLATX4A . it s
SC-4060  Plot Symbol Dictionary o Ai-9

132<
A.7-1



Vil sysvems

AECGONDD BEACH. CALIFORNIA

Read and Rewind

READ } Fnables the user to read and write arrays of data
WRITE as binary information on magnetic tape

EOF } Enables the user to write end of file marks on
REWIND magnetic tape and to rewind them

LIST Prints the elements of a matrix and identifies each
by its row and column number

PUNCH Punches out a matrix, size n*n, one column at a time
in any desired format

SYMLST Prints ocut and identifies the element values of a
half symmetric matrix

PNTABL Provides output information for users of sub-
routine ABLATS

133<
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DATA INPUT AND TEMPERATURE PRIWNTOUT  RcOONnD Bent. Sa oA
SUBROUTINE NAMES : GPRINT or QFPRNT
PURPOSE:

These subroutines cause the printout of all conductor values or heat flow
rates through conductors. All values are printed out versus the actual
conductor numbers on which they occur. When using either of these subrou-
tines the user must allocate one dynamic storage location for each conduc-
tor in the system. The locations are permanently retained for storage of
the actual conductor numbers and is common to all subroutines® requiring
them. In addition, subroutine QFPRNT requires one extra dynamic storage
location per conductor for temporary storage of heat flow rates through the
conductors,

RESTRICTIONS:

These subroutines require no arguments and are generally called from the
EXECUTION or GUTPUT CALLS block; do not call them from VARIABLES 1. Non-
linear conductors are evaluated prior to calculation and/or printing of

" requested values.

CALLING SEQUENCE:

GPRINT or QFPRNT

*For example, the actual conductor numbers stored by GPRINT are available
to CSGDMP and RCDUMP, thereby conserving dynamic storage.

SUBRCUTINE NAMES: TPRINT or CPRINT or QIPRNT or QNPRNT

PURPOSE:

These subroutines cause the printout of all nodal temperatures, all
capacitance values, all impressed heating rates or all net heating rates
for the nodal network under consideration. All values are printed out ver-
sus the actual node numbers on which they occur. When using any of these
subroutines the user must allocate one dynamic storage location for each
node in the system. The locations are permanently retained for storage of
the actual node numbers and is common to all subroutines?® requiring them.
It should be noted that TPRINT call on SINDRD (page A.7-4).

RESTRICTIONS : | R TP

These subroutines require no arguments and are generally called from the
EXECUTION or OUTPUT CALLS block; do not call them from VARIABLES 1. Non-
linear network elements are evaluated prior to calculation and/or printing
of requested values.

CALLIRG SEQUENCE:

TPRINT or CPRINT or QIPRNT or QNPRNT

*For example, the actual node numbers stored by TPRINT are available to
CSGDMP and RCDUMP, thereby conserving dynamic storage.

134<
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NUMERICAL DIFFERENCING CHARACTERISTICS FLOATING POINT PRINTOUT

SUBROUTINE NAMES: STNDRD or PRNTMP

PURPQSE:

Subroutine STNDRD causes a line of output to be printed giving the present
time, the last time step used, the most recent CSCGMIN value, the maximum
diffusion temperature change calculated over the last time step and the
maximum relaxation change calculated over the last iteration. ANN refers
to the actual node number on which something otcurred. The line of out-
put looks as follows:

* k x %

TIME DTIMEU CSGMIN ( ANN) TEMPCC ( ANN) RELXCC{ ANN)
Subroutine PRNTMP internally calls on STNDRD and also lists the tempera-
ture of every ncde in the network according to relative node number. The
relative node number - actual node number dictionary printed out with the
input data should be consulted to determine temperature locations on the
thermal network model.

RESTRICTIONS:

No arguments are required or allowed. These subroutines should be used
with network problems only.

CALLING SEQUENCE:

STNDRD
or PENTMP

SUBROUTINE NAMES: PRINT or PRINTL

PURPOSE:

These subroutines allow individual floating point numbers to be printed.
The arguments may reference temperature, capacitance, source locations,
conductors, constants or unique array locaticns. 1In addition, subroutine
PRINTL allows each value to be preceded or labeled by a six character
alphanumeric word. The number of arguments is variable but the "label"
array used for PRINTL should contain a label for each argument.

RESTRICTIONS:

These subroutines do not call on STHDRD. The user may call on it if he
desires time control information. Any contrcl constant may be addressed
in order to see what its value is, integers must first be floated.

CALLING SEQUENCE:

PRINT(T,C,Q,G,K,...,A+)
or PRINTL(LA(DV),T,C,Q,G,K,...,At)

135
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ARRAY PRINTOUT

SUBROUTINE NAME: PRINTA

PURPOSE :

This subroutine allows the user to print out an array of values, five to
the lime. The integer array length N and the first data value location

must be specified. FEach value receives an indexed label, the user must

supply a .six character alphanumeric word L to be used as a common label
and an integer value M to begin the index count.

RESTRICTIONS :

The array values to be printed must be floating point numbers.

CALLING SEQUENCE: o :
. PRINTA(L,A{DV) ,N,M)

1f the label was the word TEMP, N was 3 and M was 6 the line of output
would look as follows:

TEMP { 6)value TEMP ( 7)value TEMP ( 8)value

. .
SUBROTITINE NAME: ‘ - PRNTMA or PRNTMI
PURPOSE:

This subroutine allows the user to print out up to 10 arrays in a colum
format. The individual elements are not labeled but each column receives
a twoe line heading of 12 alphanumeric characters each. The two line
heading must be supplied as a single array of four words, six charactérs
each. The user must supply the starting location of each label array and
value array. The number of values in each value array must agree and be
supplied as the integer N. The value arrays must ‘contain floating point
numbers. : '

r

RESTRECTIONS:

Labels must be alphanumeric while values must be floating point. All
floating point value arrays must contain the same number of values.

CALLI2G SEQUENCE:

PRNTMA (N, LAL (DV) , VAL (DV) ,LA2(DV) , VA2(DV) ,...)
PRNTMI (N,LA1(DV),VAL(DV),LA2(DV) ,VA2(DV},...)

* VAL must address array of integers (1st column}

136<
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ARRAY PRINTOUT

SUBROUTINE - NAME: PUNCHA
PURPOSE:

This subroutine enables a user to punch out an array of data values in any
desired format. The F argument must reference a F@PRTRAN F@RMAT which has
been input as an array, including the outer parenthesis but deleting the
word FPRMAT.* The second argument must address the first data value of the
array of sequential values. The third argument, N, must be the Integer
number of data values in the array. The output is written onto logical
tape 15, the user must provide the necessary control cards and processing
information for the operator.

RESTRICTIONS:

The user should check Appendix E for the appropriate control card require-
ments. Punched output is written on logical tape 15, operator processing
instructions should be supplied.

CALLING SEQUENCE: PUNCHA (F(DV),A(DV),N)
SUBROUTINE NAME: PNCHMA
PURPOSE :

This subroutine is similar to PUNCHA, but up to 10 equal length arrays of
data values may be punched. Again the first argument must reference a
FRTRAN F@RMAT which has been input as an array, including the outer
parenthesis, but deleting the word F@RMAT. The integer number of data
values in an array must be supplied as the second argument N. The array
starting locations then follow as arguments three up to twelve. The first
value 1In each array is punched, then the second, etc.-

RESTRICTIONS:

]

The user should checkAppendix E for the appropriate control card require-
ments. Punched output is written on logical tape 15, operator processing
instructions should be supplied. :

CALLING SEQUENCE: PNCHMA (F (DV) ,N,A1L(DV) ,A2(DV),...)

% For example, if F(DV) were AS+l, AS could be iﬁput as follows:

{(Col) 7 12
5
BCD 4(12X,5(F9.3,1H4,),F9.3)
END

137<
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SUBROUTINE NAMES: PLATX1 or PLYTX2 or PLETLL or PL{TL2
PURPOSE:

These FPRTRAN V coded quick plot subroutines call upon a large package of
undocumented subroutines specifically for the SC 4060. They will produce
up to four graphs per frame and several variables may be plotted per graph.
A suitable grid will be drawn with certain lines emphasized. The grid
lines will have reasonable numerical indicia and centered title will be
printed for both axes and at the top of the graph.

PLATX1 and PLETL1 will compute the minimum and maximum values of the stored
X and Y arrays to be plotted and calls upon PLPTX2 or PLYTL2 which use the
values as grid limits for the graph. The user may set the grid limits by
calling PLOTX2 and PLYTLZ directly. The X, Y and top titles (XT, YT and

TIT respectively) must consist of 9 alphanumeric words of six characters
each,

RESTRICTIONS :

The user should consult Appendix E, Control Cards and Deck Setup to check
tape designation requirements. The X and Y values must be floating point
numbers. The user must call subroutine PLTND after all his plotting is
done. HNo limit may be zero for log plots.

CALLING SEQUENCE:

PLQTXl(N,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY(DV))
or !
PLﬁTXZ(N,XL,XR,YB,YT,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY(DV))

PLYTL1(N,IS,TX(DV) ,TY(DV) ,TT(DV) ,NP,AX(DV) ,AY(DV) ,LM)
or )
PLPTL2 (N,XL,XR,YB,YT,1S,TX(DV),TY(DV) ,TT(DV) ,NP,AX(DV) ,AY (DV) ,LM)

Where N is the integer number of graphs per frame (1, 2, 3 cr 4),

if zero, the grid from the previous plot call is used.

IS is the integer identifying the plotting symbol (1-144)

TX is the address of the X title

TY 1is the address of the Y title

TT 1is the address of the top title

NP is the integer number of XY values or points to be plotted,
if negative the points will be connected by straight lines.

AX is the address of the X array

AY 1s the address of the Y array

XL is the floating point X axis left limit

XR is the floating point X axis right limit

YB 1s the floating point Y axis bottom limit

YT is the floating point Y axis top limit

LM 1is an integer identifying the log plotting mode;
if less tham zero plot log X versus linear Y,
if equal to zero plot log X versus log Y,
if greater than zero plot linear X versus log Y

138<
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SUBROUTINE NAMES : PLPTX3 or PLPTX4

PURPOSE:

“These subroutines are similar to PLATX1 and PL@TX2 but have 6 additional
arguments which allow the user to modify the grid as desired.

RESTRICTIONS:
See PLPTX1 and PLOTX2.

CATLING SEQUENCE:

PLATX3 (¥, IS, TX(DV) ,TY (DV) , TT(DV) ,NP ,AX(DV) ,AY (DV) ,DX,DY,L,M,I,J)
or

PLATX4 (N, XL, XR,YB,YT,IS,TX(DV) ,TY (DV) ,TT(DV) ,NP ,AX(DV) ,AY (DV} ,DX,

DY,L,M,I,J)

where the arguments are identical to PLATX1 and PLQTXZ except for

DX,DY these floating point values are used for spacing the grid
lines which are centered on the zaro values, I1If gero, no
"grid lines will be drawn. th

L,M these intepers cause every L vertical and M horizontal
grid line to be redrawn for emphasis. If zero, no grid lines
will be emphasized. If negative, a square grid will be
produced. th th

I,]  these integers cause every I  vertical and J  horizontal
grid line to be labeled with its value. If zero, no grid
lines will be labeled. If negative, the labels will be
placed outside the grid, otherwise they will appear on the
zero axis.
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PLOT PACKAGE

‘SC-4060 PLOT SYMBOL DICTIONARY
(for use with quick plot subroutines only)

Té@‘%’%’ sé’_s TEMS

REGORDO BEADS, CALIFORNA

Integer Symbol Integer  Symbol Integér Symbol Integer _ Symbol
1 31 4 61 . 105 s
2 B 32 5 62 n 106 "2
3 c . 33 6 63 o 107 o
4 D 34 7 64 P 108 <
5 E 35 8 . 65 q 109 #
6 F 36 9 66 , T 110 --(logical inverse)
7 G 37 (blank) 67 s 111 |
8 B 38 . ' 68 t 112 -
9 I 39 . 69 u 113 _
10 J 40 '(close quote) 70 v 114 o
11 K 41 $ 7N w 115 5
12 L 42 ( 72 X 116  ~(tilde)
13 M 43 ) 73 y 117 ¢ (Jozenge)
14 N 44 / 74 z 118 A
15 % 45 . -(winus) 88 " 121 -
16 P 46 + 89 ¢ 122 —
17 Q . 47 % 90 L 123 ofcirele)
18 “ R - 48 = 91 1. 124
19 s 49 a 92 .1 <125 .
20 T 50 b 93  ~(hyphen) 126 .
21 v 51 c 94 t 127 b
22 v 52 d 95 s 136 *{open quote}
23 W 53 e 96 138 {
24 X 54 £ 97 o 139 .
25 Y 55 P 98 8 140 N\
26 B 56 h 99 - (carét) 141 -(bar)
27 0 57 S 100 8 142 +
28 1 58 i 102 4 143 @
29 2 59 k 103 o~ 144 &
30 3 60 1 104 >
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READ AND REWLIND

SUBROUTINE NAMES: : READ or WRITE
PURFOSE:

These subroutines enable the user to read and write arrays of data as binary
information on magnetic tape. The first argument L must be the integer
number of the logical tape being addressed. The second argument X must
address the first data value of the array to be written out or starting
location for data to be read into. The third argument N must be an integer.
For WRITE it is the number of data values to be written on tape as a record.
- For READ it is the number of data values to be read in from tape from the
next record, not necessarily the entire record. :

RESTRICTIONS:

The user should check Appendixz E to determine which logical tapes are available
and contrel card requirements. All processed information must be in binary.

CALLING SEQUENCE: READ(L,X(DV);N}

or WRITE (L,X(DV),N)
SUBROUTINE NAME: EGF or REWIND
PURPOSE:

These subroutines enable the user to write end of file marks on magnetic
tape and to rewind them. They are generally used in conjunction with
subroutines READ and WRITE discussed above. The single argument L must be
the integer logical tape number of the unit being activiated.

RESTRICTIONS: ST
The user should check Appendix E to determine available logical tapes.

"CALLING SEQUENCE:

E$F (L)
or REWIND(L)

i
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MATRIX PRINTOUT

SUBROUTINE NAME: LIST

PURPOSE:

This subroutine prints the elements of a matrix [A] and identifies each

by its row and column number. The user must supply an alphanumeric name
ALP and integer number NUM to identify the matrix. Thils is to maintain

consistency with subroutines FILE and CALL.

RESTRICTIONS:

The matrix must have its integer number of rows and columns as the first
two data values.

CALLING SEQUENCE:

LIST(ACIC) ,ALP ,NUM)

- SUBROUTINE NAME: PUNCH

PURPOSE:

This subroutine punchs ocut a matrix [A] , size n*m, one column at a time
in any desired format. The argument F@R must reference a FPRTRAN format
statement that has been input as a positive array. It must include the

outer parenthesis but not the word FPRMAT. The argument HEAD must be a

single BCD word used to identify the matrix. Each column is designated

and restarts use of the FPRMAT statement.

RESTRICTIONS:

The matrix [A] must have exactly enough space and contain the integer
number of rows and columns as the first two data values.

CALLING SEQUENCE:
PUNCH(A(IC) ,HEAD,FPR(IC))

NOTE: This subroutine requires n+3 dynamic storage locations.

SUBROUTINE NAME: ‘ SYMLST
PURPOSE:

To print out and identify the element values of a half symmetric matrix
This output subroutine is most generally used with subroutine SCRPFA,
see page A.8-10. ‘

RESTRICTIONS:

This subroutine has no error checks built in so please exercise caution
when using. :

CALLING SEQUENCE: SYMLST(A(DV),N)

PN

where A(DV) addresses the 1,1 element and N is the wmatrix order.
Ao 7_11
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OUTPUT IOR ABLATS

SUBROUTINE NAME: PNTABL

PURPOSE:

To provide output information for users of subroutine ABLATS. The ABLATS
routine performs ablative simulation calculations but since it is called
in Variables 2 it performs mo output. The user must call PNTABL in the
Output Calls block and reference the ablative array of the ABLATS call.
When the ablative material is expended, ABLATS will call PNTABL directly
and also cause current problem time to be printed.

RESTRICTIONS:

This routine is called in conjunction with subroutine ABLATS only, see
page A.8-5,

CALLING SEQUENCE: | PNTABL(AA(IC)) *
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APPLICATION SUBROUTINES

Fluid Flow
PRESS Impresses nodal pressures in one dimensional flow
SPRESS paths once the entry pressure, path conductance
. and flow rate are known ‘

EFFG Calculates the effective conductance between two

points for a specific type of pressure network
QMETER : o
gﬁgﬂgs Used fo; caleculating flow rates
QF@RCE ) _
QINTEG Performs simple integration useful in conjunction
QINTGI with QMETER, RDTNQS, QMTRI, and QFORCE

Allows the user to specify the percentage flow

‘BIVLV

rates through two parallel tubes with common
end points

Phase Change

ABLATS

~ LQSLIR

'LQDVAP

Represents a simple ablation {sublimation) capability
Accounts for the phase change energy of a melting
or solidifying material - ‘
Allows the user to simulate the addition of liquigd
.to a nede . .

Thermal Radiation Exchange

IRRADI
IRRADE

SLRADIL
SLRADE
EFFEMS

SCRPFA

Simulates a radiosity network within a nultiple
_ grey surface eanclosure containing a non-absorbing
media '

Similar to IRRADI and IRRADE but designed to solve
for the solar heating rates within an enclosure
Calculates the effective emissivity between parallel

flat plates _
Obtains the script FA value for radiant transfer
within an enclosure
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FLUID FLOW

SURROUTINE NAMES: PRESS or SPRESS

PURPOSE:

These routines are useful for impressing nodal pressures in one
dimensional flow paths once the entry pressure Pl, path conductance G and
flow rate W are known. The respective equations are:
P2 = P1-W/G :
or P1{i 4+ 1) = P1{1)~W/G(i), i = 1,2,3,...,N

RESTRICTIONS:

For SPRESS, the pressures and conductors must be sequential and in
ascending order, the number of pressure points to be calculated must be
supplied as the integer N.
CALLING SEQUENCE: _PRESS{P1,W,G,P2)

SPRESS (N, P1(DV),W,G{(DV))

SUBROUTINE NAME: EFFG
PURPOSE:

For a pressure network of the following type:

G gk
S el 1
:Any Inter- t
P . .
1 iconnections ? P2
i - 1
6,  9©O-——-"—=—--- -4 '
2 P&

where the values of the identified elements are known, this subroutine will
calculate the effective conductance GE from Pl to P2. Any intercomnections
may occur in the space but only P2, P3 and P4 may be on the boundary and no
elements may cross it. The equation utilized is:

GE = (G1*(P1-P3) + G2%(P1-P4))/(P1-F2)

RESTRICTIONS:

See above. May not be used where capacitors appear on the internal nodes.

CALLING SEQUENCE: EFFG(P1,P2,P3,P4,61,G2,GE)

A.8-2

145<



TRW svstems

HEQONDD BEACH, CALIFORNIA

FLUID FLOW

SUBROUTINE NAMES: QMETER or RDINQS or QMTRI or QF@RCE
PURPOSE:

These subroutines are generally used for calculating flow rates. Their
respective operations are:

A = B*(C-D)
or A = B*({(C+460. )”—(D+460 ) )
or Al = Bi*(Ci-Ci+l) s = 1,N
or Al = Bi*(Ci-Di) s = 1,N

RESTRICTIONS:

All values must be floating polnt numbers except the array length N which
must be an integer.

QMETER(C,D, B,A)

or RDTNQS(D,C,B,A)

or QMTRI (N, C(DV),B(DV),A(DV))

or QF@RCE(N,C(DV),D(DV),B(DV),A(DV))

CALLING SEQUENCE:

SUBROUTINE NAMES: QINTEG or QINIGI

PURPOSE:

These subroutines perform o simple integration. They are useful for obtaining
the integrals of flow rates calculated by QMETER, RDTNQS, QMTRI or QFORCE.
Their respective operations are:

S
or Si

S+Q*DT
Si+Qi*DT , i = 1,N

RESTRICTIONS:

A1l values must be floating point numbers except N which must be an integer.
Control comstant DTIMEU should be used for the step size when doing an
integration with respect to time. These subroutines should be called in
Variables 2.

CALLING SEQUENCE: QINTEG(Q,DT,S)
or QINTGI(N,Q(DV),DT,S{DV))

146
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FLUID FLow

SUBROUTINE NAME: BIVLV

PURPOSE:

This subroutine allows the user to specify the percentage flow rates
through two parallel tubes with common end points. One tube must consist
of a single flow conductor (Gl) while the other tube may consist of one or

~more sequential flow conductors (G2(I}, I = 1,N). The ratio of flow
through Gl divided by the total flow may be calculated in any desired
manner and must be supplied as the argument W. The conductor values of
either one tube or the other are reduced in order to achieve the desired
percentage flow rates irregardless of the pressure drop.

RESTRICTIONS:

»

N must be an integer. G2 must address the first of the sequential con-
ductors in that tube,

CALLING SEQUENCE: BIVLV(N,W,G1,G2(DV)

41
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PHASE CHANGE 148<
SUBROUTINE NAME: ABLATS

© PURPOSE:

To previde a simple ablation (sublimation)capability for the SINDA user. The
user constructs the 3-D network witliout considering the ablative. Then in
Variables 2 he simulates 1-D ablative attachments by calling ABLATS, ABLATS
constructs the 1-D network and solves it by dmplicit forward-backward
differencing (Crank-Nicholson method) using the time step set by the execu-
tion subroutine. Separate ablation arrays (AA) must be used for each ABLATS
czll. Required working space is obtained from unuséd program common. Several
ARLATS calls thereby share unused common. The user must call subroutine
PWTARLCAA) in the Output Calls te obtain ablation totals and temperature
distribation. : - ,

RESTRICTIONS:

ABLATS must be called in Variables 2 and may be used with any execution sub-
routine. Subroutines DIDEGL, NEWIR4 and INTRFC are called. All units must be
eopsistent. The Fahrenheit system is required. Temperature varying material
property arrays must not exceed 60 doublets. Bivariate material propercies
may be simulated by calling BVSPSA prior to ABLATS. Cross-sectional area is
always considered unity. Thermal conductivity, Stefan—-Boltzmann constant and
density units must agree in area and length units.

CALLING SEQUENCE: APLATS (AA(IC),R,CP,G,T,C)

is the capacitance location of the 3-D node attached to.
is the temperature location of the 3-D node attached to.
is the location of the material thermal conductivity or the
starting location (integer count) of a doublet G vs T array.
is the Yocation of the material specifie heat or the starting
tlocation (integer count) of a doublet Cy vs T array.
38 the location of the material density or the starting location
(integer count) of a doublet B wvs T array.

AACIC) is the starting location of the ablation array which must be

formatted as follows:
AA{IC)41. the ablative 1ine number, a user specified identification integer.
2 integer number of sublayers (NSL) desired, ABLATS subtracts from

this the number of sublayers ablated. -

where

w B amao

3 the initial temperature of the material, ABLATS replaces this
with the outer surface temperature, always in degrees F.

4 the impressed outer surface heating rate per unit area,
radiation rates not included.

5 material thickness; this is replaced by the sublayey thickness.

& surface area of the 3-D node attached to, need not be anity.

7 sablation temperature, degrees F.

8§ Hheat of ablation. .

g Stefan-Boltzmann constant in. consistent vnits.

16 surface emissivity.
11 space "sink" temperature, degrees F.
12 SPACE,N,END where N equals NSI + 4.

NOTE: The outer surface radiation less is integrated over the time step.
*Thig subroutine requires 3%*(NSIt+l) dymamic storage core locations.
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PHASE CHANGE

SUBROUTINE NAME: LOSLTR

PURPOSE:

This subroutine accounts for the phase change energy of a melting or
solidifying material. The temperature limits for the reaction must be
specified (over at least a 1 degree range) and the phase change energy
supplied as a constant rate over the range {(Btu/°F). The network is
constructed to include the capacitance effects of the phase change materizl,
The network solution subroutines are allowed to calculate incorrect
answers based on capacitance effects only; a call to LQSLTR in Variables 2
then performs a corrector operation to account for any phase change
occurring (reversahility allowed) and returns corrected temperatures. The
user is required to store the oid temperature of the material (in
Variables 1) and supply it as an argument to LQSLTR. This subroutine has
a "D@" loop built in and can be applied to several sequential nodes at
once.

RESTRICTIONS:

The number of sequential nodes that this subroutine is to be applied to
must be supplied as the integer N. All other arguments must be or address
data values.

CALLING SEQUENCE: LQSLTR({N, TL,TH,S(DV),C(DV),TH(DV) ,TN(DV))
where N is the integer number of nodes to operated on

TL is the low temperature of the range

TH is the high temperature of the range

S(bv) is the first series value of the phase change energy rate
c(ov) is the first series wvalue of the nodal capacitances
TR(DV) 1is the first series value of the old temperatures

TN(DV) d1s the first series value of the new temperatures
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PHASE CHBANGE

SUBROUTINE NAME: - LQDVAP

PURPOSE: .

This subroutine allows the user to simulate the addition of liquid to a
node. The network data is prepared as though no liquid exists at the
node and is se¢lved that way by the network execution subroutine. Then
LQDVAP, which must be called Variables 2, corrects the nodal solution

in order to account for the liquid. If the nodal temperature exceeds the
bolling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point is
calculated and considered as absorbed through vaporization. If the liquid
is completely vaporized the subroutine deletes its operations. The method
of solution holds very well for explicit solutions, but may introduce some
error when large time steps are used with implicitc sclutions.

RESTRICTIONS:

This subroutine must be called in Variables 2,

CALLING SEQUENCE: LQDVAP (T, C,A(IC))

vhere T is the temperature location of the node.

C 1is the capacitance location of the node.

A + 1 contains the initial liquid weight.
contains the liquid specific heat.
contains the liquid vaporization temperature.
contains the liquid heat c¢f vaporizatioen.
receives the liquid vaporization rate (weight/time)
receives the liquid vaporization total (total weight)
contains the liquid initial temperature,

=~ Bk
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THERMAL RADIATION EXCHANGE

SUBROUTINE NAMES: IRRADLI or IRRADE

PURPQSE:

These subroutines simulate a radiosity network®* within a multriple gray
diffuse surface enclosure containing a non-absorbing media. The input is
identical for both subroutines. However, IRRADE utilizes explicit equations
to obtain the solution by relaxation and IRRADI initially performs a
gymmetric matrix algebra inverse and thereafter obtains the exact solution
implicitly by matrix multiplication. The relaxation criteria of IRRADE is
internally calculated and severe enough so that both routines generally yield
identical results. However, IRRADE should be used when temperature varying
emissivities are to be considered and IRRADI should be used when the surface
emissivities are constant. Both subroutines solve for the J node radiosity,
obtain the net radiant heat flow rates to each surface and return them
sequentially in the last array that was Initially used to input the surface
temperatures. The user need not specify any radiation conductors within the
enclosure. :

RESTRICTIONS:

The Fahrenheit system is required. The arbitrary number of temperature
arguments may be constructed by a preceding BLDARY call. The emissivity,
area, temperature-Q and upper half FA arrays must be in corresponding order
and of exact length. The first data value of the FA array wust be the integer
nunber of surfaces and the. second the Stefan~Boltzmann constant in the proper
units and then the FA floating point values in row order. The diagonal ele-
ments (even if zero) must be included. As many radiosity subroutine calls as
desired may be used. However, each call must have unique array arguments.

The user should follow the radiosity routine by SCALE, BRKARY or BKARAD to
distribute the Q's to the proper source locatioms.

CALLING SEQUENCE: IRRADI(AA(IC) ,Ac (IC) ,AFA(IC) ,ATQ(IC))
or IRRADE {AA{IC),Ae(IC),AFA(IC),ATQ(IC))
where the arrays are formatted as follows: A

AA(IC),Al,A2,A3,A4,..,AN,END

Ae(IC),el,e2,e3,e4,...,eN,END

AFA(IC) N,o FA(l 1),FA(1,2),FA(1,3), FA(l 4),FA(1,5),..,FA(L,N)
FA(2,2),FA(2,3),FA(2,4),FA(2,5),..,FA(2,N)

FA(N-2,N-2),FA(N-2,N-1),FA(N~2,N)

FA(N~-1,N-1),FA(N~1,N)

FA{N,N),END
ATQ(I1C),T1,T2,T3,.., TN,END '

where FA(1,2) is defined as A(1)*F(1, 2) ~ After the subroutine is performed
the ATQ array is ATQ(IC),Q1,Q2,Q3,..,QN,END,
Since FA1(1,2)=FA2(2,1) only the upper half triangle of the full FA matrix
is required. TIRRADI inverts this half matrix in its cwn area, hence
approximately 300 surfaces may be considered using SINDA on a 65K core machine.

*"Radiation Analysis by the Network Method," A. K. Oppenheim, Transaction of
the ASME, May 1956, pp. 725~735. '
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THERMAI, RADTATION EXCHANGE

SUBROUTINE NAMES: " SLRADI or SLRADE
PURPOSE:

These subtoutines are very similar to IRRADY and IRRADE but are designed to
solve for the solar heating rates within a enclosure. SLRADI inverts a half
symmetric matrix in order to obtain impliecit solutions, while SLRADE obtains
solutions explicity by relaxation. SLRADE should be used when temperature
varying solar absorptivities are to be considered. The second data value of -
the AFA array must be the solar constant in the proper units. The AT array
allows the user to input the angle (degrees) between the surface normal and
the surface-sun line. The AI array allows the user to input an illumination
factor for each surface which is the ratio from zero to one of the unshaded
portion of the surface. The solar constant (8), AT and AL values may vary
during the transient for bhoth routines. No input surface temperatures are
required. The absorbed heating rates are returned sequentially in the AQ
array, the user may utilize SCALE, BRKARY or BKARAD to distribute the heating
rates to the proper source locatioas.

RESTRECTIONS:

These routines are independent of the temperature system being used. All of
the array arguments must reference the integer count set by the SINDA pre-
processor and be of the exact required length. As many calls as desired
may be made but each call must have unique array arguments.

CALLING SEQUENCE: SLRADT (AA(IC),Ae (IC) ,AFA{IC),AT(IC),AI(IC),AQ(IC)) -
or  SLRADE(AA(IC),Ae(IC),AFA(IC),AT(IC),AT(IC),AQ({IC))

SUBROUTIRE NAME: EFFEMS
PURPOSE:

This subroutine calculates the effective emissivity E between parallel
flat plates by the following equation:

E=1.0/(3.0/E1 + 1.0/E1 -~ 1.0)

where El and E? are the emissivities of the two surfaces under consideration.

RESTRICTIONS:

Arguments must be floating point numbers.

' CALLING SEQUENCE: EFFEMS (E1,E2,E)
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THERMAL RADITATION EXCHANGE

SUBROUTINE NAME: ‘ SCRPFA
PURPOSE:

To obtain the script FA value for radiant transfer within an enclosure, The
input arrays are formatted as shown for subrcutines IRRADI and IRRADE. The
second data value in the AFA array is used as a final multiplier, if 1.0

the script FA values are returned, if ¢ then script ¢ FA values are returned.
The script FA values are returned in the ASFA array which is formatted
identical to the AFA array and may overlay it.

RESTRICTIONS: : :

All array arguments must reference the integer count set by the SINDA pre-
processor and all arrays must be exactly the requived length.

CALLING SEQUENCE: ‘SCRPFA(AA(IC),AE(IC),A?A(IC),ASFA(IC))

NOTE: Subroutine SYMLST(ASFA(IC)+3,ASFA(IC)+1) may be called to list the
matrix values and identify them by row and columm number. This routine
and the implicit radiosity routine finalize the half symmetric coefficient
matrix dand call on SYMINV(AFA(IC)+3,AFA(IC)+1) to obtain the symmetric

inverse.
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B. THERMAL NETWORK CORRECTION PACKAGE

B.

1

B.2

Introduction

The thermal network correction package consists of 2 number
of subroutines, many of which are internally programmed as part
of a larger program subpackage such as STEP which is discussed in
Appendix C. These subpackage programs are not totally integrated
and must be employed in a stepwise procedure. Major subpackages
are denoted Data Comparison and Plotting, Sensitivity Analysis,
and Parameter Correction. Detailed operational procedure from
test data to a corrected network! and theoretical development?
are reported elsewhere. Major considerations and users instruc-—
tions are reported here.

Theoretical Development

Kalman filtering was chosen over other methods because it
offered a way to solve some of the problems presented by tempera-
ture measurement sparsity, yet retains solution simplicity when
the number of measured temperatures in a region is complete.
Governing equations are presented for the case of temperature
sparsity and for the special condition of complete temperature
measurement. )

Sparse Temperature Measurements
Consider the heat balance equation

n b.

g-:—i- = sz . 3 a—{i:l (T; - T,) + 02 —Cl-i ('rj" - 'rit‘_)' (8~1)
i =1 i =1 i
) i=1,2,...,n
where: Ti. is the temperature of the nth node
1 is the time
aij is the conductance
Ci is the capacitance of the ith node
bij is the radiation coefficient

For a thermal model that contains n nodes with m nodal
temperatures measured, where m < n, the random noise corrupted

Ishimcto, T., Gaski, J. D., Fink, L. C., "Final Report, Development
of Digital Computer Program for Thermal Network Correction, Phase II
——Program Developm=nt, Phase III--Demonstration/Application,"
September 1970, 1i027-6002-R0-000, TRW Systems Group.

Ishimoto, T., Pan, H. M., Gaski, J. D., and Stear, E. B., "Final
Report, Development of Digital Computer Program for Thermal Network
Correction, Phase I--Investigation/Feasibility Study," January 1969,
11027-6001-RP-00, TRW Systewms Group.
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neasurement vector, {y*}, is an m by 1 vector whose elcments are
given by the m noise corrupted measured temperature. This is
given by

b J ) s”: x % -
{y*} = (I} T5 Ty eon Tj es ) (B-2)

where T? = random noise currupted measured temperature for the
ith node, 1 = 1,2,...,m :

Sum of model parameters and isothermal nodes is p. The state
vector iz a p by 1 vector vhose elements are the n nodal tempera-
tures and the (p-n) model parameters. The (p-n) parameters are
represented by

Q a b
&, D, ama .
i

The state vector is indicated by

Q a b
T _ e S s R 5 1 -
{x}" = (T1 T, «en T, c, ces ¢, RS ) (B-3)

Relationship between the measurement vector and the gtate vector
is given by the following matirz observation equation:

{y*} = [MI{x} + {W} (8-4)
In equation (B-4) [M] is the m by p measurement matrix given by

I

[M] = 0 : (B-5)

(o x m)

|
and {W} is the m by 1 random measurement noise vector whose elements
are the random noises associated with the m measured temperatures.
This is given by

T ' : . , ' '
W} = (W, ... W) - (B-6)

Details of the derivation of the Kalman filter may be found
in the cited Reference 2, Page B-1; the following summarizes the

Falman filter equations whereby the correction of thermal model
parameters can be obtained sequentially.

Ayt = M=), + W D
)y, = 01 (=), | | ’ (2-8)
@), = (x), + (Bl 0N, - (70) (B-9)

| 7}, = Ml gx}, . | (8-10)
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(8], = [a) D1 (D (a] 01 T+ o1 (B-11)
131, = ([1] - [B] 1)) [a], (8-12)
CRIEN L REIR | o (8-13)
[Al,,,, = (U] 19] (01" - (B-14)

random noise corrupted measurement vector

where {y*}t
(temperature) obtained at time,t.

{x}t = value of the state vector (unknown parameters)
at time, t. .
{W}t = random noises associated with the measured data
cbtained at time, t.
{x} = value of the state vector (unknown parameters) at
t+at .
time, t+it.
'{M}t = measurement matrix evaluated at time, t.
{ﬁ}t = new estimate of thé state vector (unknown para-
meters after processing the measured data cbtained
at time, t.
{xa}t = a priori estimate of the state vector (unknown

parameters) before processing the measured data
obtained at time, t.

[B]t = measurement weighting matrix evaluated at time, t
(the time varying gain).

(4], = E[(x} - G () = (D7), error covariance
matrix for the a priori estimate state vector.

[J]t = E[({{x} - {£1){x} - {i})T], error covariance matrix
for the newly estimated state vector.

[U]t = transition matrix.

Given the correction scheme whereby the Kalman filter equations
are used, the following steps are performed:

(1) First obtain am a priori estimate for the state vector {x,}y and
the associated error covarilance matrix [A]g;

(2) Calculate the time varying gain [B]; using the equﬁtion (B~11)
and the first set of measured data;

(3) Obtain new estimate for the state vector, {ﬁ}t using equation
{B-9) and the first set cf measured data;

(4) Calculate the error covariance matrix, [J], for the newly
estimated {x}t using equation {(B-12);

"(5) Update the newly estimated state vector,'{i}t with equation (B-13)
to obtain the new a priori estimate at time t+AT and calculate
its assoclated error covariance matrix using equation (B-14).

A56<
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(6) Repeat Steps (2) to (5) using the new a priori estimate for the
state vector and its associated error covariance matrix with the
second set of measured data.

(7) Repeat above until all the measured data have been processed or
until desirable results* are obtained.

Temperature Dependent Parameters

’

For temperature dependent parameters, the coefficients are con-
sidered to be of the form

aij = aij f(Ti’Tﬁ) (B-15)
bij = bij g(Ti,Iﬁ) ' ' (B-16)

Only the constant portion of aj; and by,, aij and bj;, is to be
corrected and the functions f(Ti,Tj) and g(Ti,Tﬁ) are coniidered to
be known.

Using equations (B-15) and (B-16) for the aj;'s and the bij's,
the heat balance equation for node i can be written as,

aT, Q m a;. n Eii b 4
& T e ci)f(Ti’Tj)(Tj"Ti)+j§f( c, 8o ) (T -1y ) (&-17)

B.2.2 Complete Temperature Measurements

It was indicated above that if all of the nodes are monitored, a
very large network can be corrected. This is possible because the
governing heat balance equations can be operated singly and timewise
sequentially. The Kalman filter is formulated to take advantage of
this special temperature measurement situation.

The Kalman filtering equations may be formulated by first arranging
the heat balance equation at the ith node such that the known quantities
(hard parameters, temperature, and temperature derivatives, if ¢ is
hard) are on cne side of the equation and the k unknown guantities
(soft parameters) are on the other side.

The set of k equations of the ith node plus some random noise
associated with the measurement data will yield the following matrix
equation:

ly3l = [ﬁi]{xi} + W] : B (B-18)

where {y;} represents an artificial measurement vector at the ith
node composed of hard parameters and temperature data.

* Desirable results are those results whose variance are smaller than
specified values
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[M,] is the artificial measurement matrix that involves the
1" coefficients of these unknown paramters.

{xi} is the state vector formed with the unknowm model
paramaters.

'{Wi} is the random noise matrix associated with the measure-
ment data. s

If the unknown parameters are considered to be constant, the
updating matrix, [U], is essentially an identity matrix. With {x ],
{yf}, [My], and [U4] now formulated, the Kalman filtering method
is completely identified by assuming a priori information for the
unknown parameters.

After the unknown (soft) parameters for node i are determined
the procedure is repeated for the jth node with the exception that
any parameter of the jth node that was corrected with the ith node
solution is set to corrected values and designated as hard for the
jth node.

Operational Procedure for Correcting a Thermal Network

Operational procedure from test data to a corrected net-
work is a multi-step process with the interface between steps
requiring special user attention. Some attention was given to
integrate or eliminate some of the interfaces but network size
and the need for flexibility requires direct user parricipation.
Higher 1s the degree of automation, less flexible and less
general is the resultant network correction program. The over-
all operational procedure for thermal network correction
recognizes the need for user simplicity but was based upon
flexibility and generality counsiderations. A flow diagram with
separate program packages and interfaces is shown in Figure B-1;
a description of the operational procedure is reported in
Reference 1.

Data Comparison and Plotting

Comparison of test and analytical temperatures for the pur-
pose of isolating those that are out-of-tolerance requires
several sub-steps before temperature compariscn camn begin.
Qut-of-tolerance criterion is determined from accuracy assessment
of analytical temperatures; for the latter, a sensitivity
analysis program called STEP offers a way for this assessment,
Discussion of STEP and users instructions are presented in
Appendix C. ’

Due to the indeterminate amount of data that have to be
processed, the comparison and plotting capability was coded as
two separate subroutines, C@PMPAR and PLPTMP. These subroutines
are coded in such a manner that they may be called in the same

138<
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run or in a batched mode. The actual plotting is done by internal
calls to SC-4060 quick plot subroutines which have identical names
and arguments to the CINDA-3G SC-4060 quick plot subrouiines in
use at NASA/MSC. Description and users instructions for C@MPAR
and PLPTMP are presented in Table B-1 and Table B-2, respectively.

?

Parameter Correction

Parameter correction of a large thermal network with temperature
sparsity requires a means of assessing unobservability, observability,
and the correction of the parameters. Unobservability of a network is
determined as part of the KALFIL subroutine and observability of a
network is pursued with a separate subroutine called KAL®BS. The
need for two separate subroutines is a direct result of the two Kalman
filtering formulation. Subroutine KALFIL processes the network
equations simultaneously whereas subroutine KAL#BS processes the
network equations singly and sequentially. In general, KALFIL should
yield more accurate corrections than KAL@BS. Integration of both
subroutines into a single package would have unduly complicated the
overall thermal network correction package; the user thus must make
a decision based upon rather simple ground rules. If a network
contains totally measured nodes, KALPBS is used unless the number of
nodes plus the number of "soft" parameters total less than 100; for
the latter KALFIL is used. If a network contains a region or regions
with complete temperature measurements, subroutine KALPBS is called
first in order to correct and set hard those "soft' paramesters which
are totally observable; then subroutine KALFIL is called for the
remainder of the network. If a network contains only a limited
number of measured temperatures and the measurements are sparsely
distributed, subroutine KALFIL is called,

An important consideration that should be discussed here is the
accuracy of the "soft" parameter correction. The correction is
subject to the observability of the conductors end the accuracy of
the measured temperatures. In some instances, the corrected parameter
values may be in gross error and physically not realizable, such as
a2 negative conductor, but this should not be particularly surprising
since the parameter values merely reflect the accuracy and cbserva-
bz.ity conditions. On the other hand, the calculated temperatures
with the corrected parameters should correlate quite closely with
the measured temperatures.

Network Correction with Complete Temperature Measurements (KAL@BS)

This subroutine is used to correct "soft" parameters that are
contained in a totally observable network or subregions. These
regions are identified as measured nodes surrounded by measured nodes
with the basic smallest totally observable region being a single
measured node surrounded by measured nodes. The heat balance
equations are processed singly and sequentially with the "soft"
parameters set "hard" after correction,

160~
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TABLE B-1

TEMPERATURE~TIME HISTORY COMPARISON SUBROUTINE

SUBROUTINE NAME: C@MPAR

PURPOSE;

This subroutine compares two time~temperature history matrices
to see if the data sets agree within some specified tolerance. The
user must supply an array of integer node numbers in the corresponding
order of the tempmarature data. Those temperature sets which are out-
of~tolerance will have the node number set negative in preparation for
plotting of out-of-tolerance temperatures by subroutine PL@TMP.
(Table B-2),

RESTRICTIONS:
The two time-temperature history matrices must be of equal size and

the node numbers input under the indicator array must be in the same
order as the matrix temperature data.

CALLTNG SEQUENCE: COMPAR (TA(IC) ,T@L,TM1(IC) ,TM2(IC))

Where: IA is the address of the indicator array )
—T@L is the out-of-tolerance criterion {(°F)
M1 is the first time-temberéiuré matfix arfay*
™2 is the secon& time—temperaturé matrix array®

.\

* Refer to page A.6-1 for matrix format (first column is timé)

161<
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TABLE B-2

TEMPERATURE PLOT SUBROUTINE

SUBROUTINE NAME: PLOTMP

PURPOSE:

This subroutine should be used in conjunction with subroutine
CPMPAR. The indicator array is searched until a negative node number .
is found which indicates an out-of-tolerance condition. The corresponding
temperatures from array Till and TM2 are then plotted using x and o
plotting symbols, respectively. The actual node number from the
indicator array is printed as a top line heading. The plot produced
requires further processing on the SC-4060,

RESTRICTIONS:

The user should consult Appendix E, Centrol Cards and Deck Setup,
to check tape designation requirements. Subroutines PLEATMP selects
the appropriate grid limits and then internally calls upon subroutine
PLPTX2. The user must call upon subroutine PLTND zfter all plotting
has been completed.

CALLING SEQULNCE: PLETMP (IA(IC),TML(IC),TM2{IC))}

Where: IA is an indicater array of actual ncde numbers
preprocessed by subroutine CPMPAR
*
TML is a time~temperature matrix array
- %
T™M2 is a time~temperature matrix array

T

£ Refer tb pagé A.6-1 foir matrix format (first cplhmn is time)
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For this subroutine theoretically all (less one) of the parameters
agsociated with a given node may be selected as "soft'" and correctable,
the user should keep the number of "soft" parameters to a minimum and
in general it is better not to mix a "soft" capacitance with "soft"
conductances and/or source associated with a given node. User
instructions for KAL$BS 1s presented in Table B-3, s

Example of an input for subroutine KAL@BS is given in Table B-4.
The thermal model used for illustrative purposes is the five-node
model described in Appendix D. Explanation of the varicus inputs is
indicated directly om the computer print-out as shown in Table B-4.

" The model considered here has complete temperature measurements, 6

soft conductors and a perturbation factor of 50%. It should be
particularly noted in this example that some of the input is for the
generation of simulated temperature data and perturbed parameters.
The input when experimental data are used would be different from
the input shown in the example.

Network Correction with Temperature Sparsity (KALFIL)

This subroutine determines the unobservability of network
elements and sets all unobservable elements as "hard" in the indicator
vector, thereby eliminating them for corrective consideration.
Subregions are identified and dummy pseudo compute sequences formed,
These dummy pseudo compute sequences are then utilized by subroutine
UMATRX to form the Integration matrix utilized In calculating the
B and J matrices. {(Refer to paragraph B.2.1) Integration of the
total network is performed by a standard SINDA network integration
subroutine. In this manner the KALFIL parameter correction method
for the condition of temperature sparsity is applied to the subregions
simultanecusly as though the rest of the network was totally hard. A
subregion surrounded by unmeasured nodes is less desirable than one
surrounded by measured nodes. The latter Isolates the subregion from
ocoutside influences, while the former is susceptible to error
propagation from other subregions not yet corrected. In order to
hold external influences to a minimum, all nodes outside the subregions
under construction are feorced to the measured temperatures, if
available. o

The conditions of observability and unobservability as determined
in Reference 2 are listed in Table B-5. 1In subroutine KALFIL
parameters between unmeasured nodes are automatically set-hard (item
6, Table B-5) since these parameters are completely unobservable,

For this subroutine, it is better not to mix a "soft" capacitance with
"soft" conductances and/or source associated with a given node, Users
instructions for KALFIL are presented in Table B-6,

An example of input for subroutine KALFIL is shown in Table B-7,
again using the five-node model. This example contains 4 measured
temperatures and six soft conductors. Explanation of the variocus
inputs is indicated directly on the computer print-out.

163<
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TABLE B-3

KALMAN NETWORK CORRECTION WITH COMPLETE TEMPERATURE MEASUREMENTS

SUBRQUTINE HNAME: KAL#BS

PURPOSE:

This subroutine uses the Kalman filter method to correct soft
parameters that are contained in totally observable subregions. This
subroutine employs the heat balance equation singly and time wise
sequentially. Such a subregion includes all the conductors into a
measured node when all thes surrounding nodes are also measured. If an
adjoining node has identical temperatures as the node under considera-
tion, correction is not possible, If total measurements are not
available the user should continue the correction procedure by using
the subroutine KALFIL, This routine removes node source and conductor
numbers from the IC and IG arrays for corrected parameters. KALPBS
is called in the execution block.

RESTRICTIONS :

This subroutine requires the long pseudo-compute sequence (LPC3).
The capacitor, source, and conductor indicator arrays must have their
contents in the same input order as the node, source and conductor
data, respectively. All temperatures must be in the Fahrenheit system.

CALLING SEQUENCE: KALOBS (IPNT,IT(IC),IQ(IC),IC(IC),IG(IC) ,HT,TNF,
QNP, CNP,GNP)

Where: IPNT dis an intermediate print indicator: I=0,no;I#£0,ves

IT 1s an array of actuzl ncde numbers of measured
temperatures and must be In the same order as the
test temperatures

1IQ 1is an array of actual node numbers of soft sources
IC 1is an array of actual node numbers of soft capacitors

IG 1is an array of actual conductor numbers of soft
conductors

HT 1s a time history matrix of test temperatures, each -
row being a time slice with time as the first value

TNP is the temperature noise estimate
QNP 1is the percent of estimated source error times 0.01
CNP 1is the percent of estimated capacitor error times 0.01

GNP 1s the percent of estimated conductor error times (.01

-1 164<
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TABLE B-4 EXAMPLE OF INPUT FOR SUBROUTINE KALQRS
FIVE-NODE MODEL, 6 SOFT CONDUCTORS

vl0 JTHERMAL Lp(s

300 9 &5 HOODE PROBLEM FOR C(MECKOUT OF KALPBS SURROUTINE

END ' '

BCD 3INUGFE DATA
II5QI9!I!323IlQobllle393$qulllq'62'l'i’l5|!02'b°l'
ebr=480e 23, ' ' '

END ‘ : :

BCD 3SOURCE QATA '

SIT jyr9,1.0

ST 1,49,05%

LD

BCL 3COADUCTuR DaTA

SIV 1ol e24A2: k210201 140A25,K22:301350R2501K23

SIV 492¢3:A23,K2419,42184A25,K25
6050237 433,50e20 0415 ,02

GEN w9 )41 ple0y2,i5,2E=9
ulJ;l.broEE-Q

GEN wid,4,102,C1311,02E29
'lﬁylnq'°2E°9|“1qi3|5|.2£v9.?20l336§02559
w2l G2 =312 2234800 2E29 1" 23105 4bpe2E"Y

END

BLCD 3CORSTANTS DATA .

TIMEND2.0,00TPUT 00

1=6 » NUMBER OF SCOFT PARAMETERS
254 ¢ NUMBER OF NUDES
3=0,.5 $ PERTURSBATION FACTOR
. 210024221420 23 002024 ,4924284,2
END
BCO 3ARKAY DATR .
3021 :6SPACE,128,END $ TIME HISTORY MaTriX
5+SPACE 16, END $ SPACE FOR INITIAL TEMPERATURES

910 e 180410115043 24158,4+END s TlMg VARY NG § CURVE: SANYOQTH
114192+354,5,END 5 MEASURED TEMPS )N ORpEr STORED

1211929 3s4,5,6,ND $ NODE NUMBERS FOR pRNTMI

1991349841201 8e230END 5 SOFT CONDUCYOR NUMBERS FOR KALOBS
159144, 8,0012:18,234END 5 SOFT (UNDUCYOR NUMBERS FOR PRNTMI
2900 e 7 g LU0 s Ls28,EnD $ yARJABLE CoNpuCTIV]TY

91)SPACE 5, EnD s SHACE FOR ORIGINAL PARAMETERS
9215PaCE,4,END $ SFACE FUR PERTURBED PARAMETERS
¢3 ) 5PACE y 8, nD $ SFACE FOR CORRECYED PARAMETERS
944SFPACE ;4 END $ SPACE FOR ORIGINAL TEMPERATURES
95 15PACE 4, END % SFACE FQR PERTURBED YEMPERATURES
9615P8CE 16, ND $ SPACE FOR CORRECTED TEMPERATURES
974SPACE, 4 ,END $ SPACE FOR PERCENYVAGE pff
98 - .

BCD 4 NODE NUMBER

BCD 4 QoRIGLWAL RESULTS

8C0 4 PFRTURHED RESULTS

8C0 4 CorRECTED RESULTS
END -
99
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TABLE B-4 (Cont.)

BCD 4 oRfGIMa VALUES

BCO 4 PerRTURHER . VALUES

BCU ¢ Co&xRECTED VALUES

BCD 4 ConDUCTOR NUHMBE®R

BCD ¢ PERCENTAGE OFF
END

END

BCD 3EXECUTION
DIMENSION XI[5:00)
NDIM » S000

NTH p D
TPRINT
GPRINY }
BLOARY(AS] ,K21,:xk24,68:¢G}2,618,623) § SAVE gRIG PARKMETERS
SHFTV (55T ] ,a5]) ¥ SAVE [INJTiaL TEMPERATURES
CNFRDL $ SIMULATE TEST DATA
SHFTV(GsTL,A9%) . 5 SAVE ORIGINAL RESULTS
TIMEQD & (40 '
SHETV (5445 ,T11} $ RESET IniT1AL TEMPERATYRES

THE FOLLO#IHNG ScalLE cARD PERTUREBS SO0FT G FACTORS aoR VALUES
SCALE(KI K21 ,K211R24,K24,G8,68,612,G612,618,618,G623,06223)
BLOARYI(AY2 K21 15k24%,G6G84612,G18,G623) $ SAyYE PERTURBED PARAMg

CNFRDL $ pBTAIN PERTURBED TEMPERATURES

SHFTV(&+T],495) $ SAVE PERTURBED RESULTS
TIHEO =z 1.0 ’

SHFTV(5s45,T1) $ RESET INITIAL TEMPERATURES

KALQRS(B|AIluoiﬁihlqsﬁ3.0loll0503000|l|0}

BLDARY(A73 ,K2),k24,GR:6}2,618,623) % SAVE CORRECTEU PARAMS

SUBARYIK]I yA93)A91)497) $ OBTAJN COBRECT| N DIFFERENCE

DIVARY(KI ,A971A914A97) & CONVERT YO PERCENT

ARYMPY (KL A9+ 1C0n0A97)

PRNTMI(K] sA99¥ 13 1A |54 JAF941 1A% 0A9995,A92 A99+F,A5]
A99e17+A97) s PRINT THi CONDUCTOR DATR

SHFTV(G53A5,71) $ RESEY INJTIAL TEMPERATURES
TIMEQ = p.0 '

CNFROL $ 0BYAIN CORRECTED VEMPERATYRES

SHFTV{69T],A54) $ SAVE (ORRECTED RESULTS

SUBARYTK2,A94¢A94,A97) $§ OBTAIN CORRECY]ON DIFFERENCE
ARYADDIKZ ) A9qe450004A94) 5 CONVERT TQ RANKINE
DIVARY(K2,A970A94,A97) & CONVERT To PERCENTs RANKINE BASE
ARYSUBIKZ,A941450+0,A%4) $ CONVERT 70 DEGREES F
ARYHPY(K2,497010Ce0,A9T7) ,
PRNTMI(KZ \AGR*) AL 2¢1;A98+45,894sA98+3,A95,2968%13+A98
A994+1724A97) & pRINT TEMPERATURE DaTa
END .
BCD 3VAR]ABLES |
TIKEM = TIMEOD
END ) .
BCO 3IVARIABLES 2
END o
BCD 30UTPUT CALLS
TPRINT

TESTMP(JTEST 54714 TIHEN,A3) .5 .STORE ANALYT{CAL TEMPERATURES

po1y  AEB<

END
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4.

5.

6.

7.

General Comment:

TABLE B-5

SUMMARY OF OBSERVABILITY SITUATIONS AND CORRECTIBILITY CONDITIONS

SITUATIONS

Complete temperature measurements

An unmeasured node surrounded by
measured nodes

An unmeasured node surrouanded by
measured nodes and one boundary
node

A measured node surrounded by
unweasured nodes

A measured node surrounded by
unmeasured nodes and one boundary
node

Two adjacent unmeasured nodes

Parallel coupling

temperature data;

(From Table 2-7, Reference 2)
OBSERVABILITY .

All parameters are observable

Parameters to unmeasured node
are observable

Parameters from measured nodes to
the unmeasured node are observable
Parameter from boundary node to
unmeasured node is unobservable
Parameters from the measured node
are observable

Parameters from the measured node
are observable

Parameters from the measured nodes
are observable

Parameters between unmeasured nodes
are not observable

Parallel linear coupling is not
individually observable

Farallel linear and radiation cou-
pling are individually observable

quite sensitive to the initial temperature value.

ACCURACY

General: Comments discussed
below apply

General: Comments discussed
below apply

General: Comments discussed

below apply

Specific: The correction

accuracy is very sensitive to the
value of the parameter which is
unobsexrvable and thus not correctible

General: Comments discussed

below apply

Specific: Even with exact initial
temperatures of the unmeasured nodes,
the convergence may not be the exact
parameter values

The comment for situation 4 applies
The value of the parameter from the
measured node te the boundary ncde
converges to the true value

Parameters are not correctibie

Parallel linear conductors cannot be
individually corrected

Parallel linear and radiation coupling
are individually correctible

The accuracy of the parameter correction is dependent upon the accuracy of the experimental
a quantitative measure is not known at this time.
the initial temperature must be known accurately;

For an unmeasured node

the accuracy of the parameter values are

£

4

o ams
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TABLE B-6
KALMAN NETWORK CORRECTION WITH SPARSE TEMPERATURE MEASUREMENTS

SUBROUTINE NAME: KALFIL

PURPOSE:

This subroutine performs network parameter correction by the Kalman
filter method. 1In general it should be applied to the model being corrected
after KAL@BS has been applied. This routine must be called upon in the
Variables 2 block with CNFRDL in the execution block. It performs an
initial pass in order to reduce (set hard) those network elements which
are uncorrectable due to observability eriteria (unobservable). It then
makes a second pass in order to remove from the calculation procedure
measured nodes which do not contribute to the solution. It then sets up
several square matrices of order N, where N is the number of remalning
measured temperatures and soft parameters, and simultaneously solves the
Kalman filter set of equations. All corrected parameters are set hard
and the corrected values placed into the appropriate network locations.
Immediately after the correction process, analytical check runs can be
performed.

RESTRICTIONS :

The long pseudo-compute sequence (LPCS) Is required. This subroutine
must be called within the Variables 2 block by the CNFRDL execution
subroutine. Noise or error estimates of zero are not allowed.

CALLING SEQUENCE: KALFIL(I,IT(IC),IC(IC),IQ(IC),IG(IC),AT(IC),AJ(IC))

Where: I is an indicator for intermediate printout: I=0,no;I#0,yes

IT is an array of actual integer node numbers of the
measured temperatures and corresponding to the AT matrix

IC 1is an array of actual integer node numbers of soft
capacitors and must be in the same order as the node
data input

IQ dis an array of actual integer numbers of soft sources and
must be in the same order as the source data imput

IG ds an array of actual integer conductor numbers of soft
conductors; must be in the same order as the conductor
data input

AT 1s a matrix of test temperature history with the number
of rows being the number of time points, the first column
representing time and the second column representing test
temperatures in the same order as the IT array

AJ 1s an array of noise and error estimate squared for each
soft parameter and must be in order with IT, IC, IQ
and IG

168<

B-15



TR sysrenss

REDOMNGD BEAQK, CALIFORMNA

TABLE B-7 EXAMPLE OF INPUT FOR SUBROUTINE KALFIL
FIVE-NODE MODEL, 4 MEASURED TEMPERATURES, 6 SOFT CONDUCTORS

BCU 3THERMAL LpPCs

KD 9 5 NODE PrGaLbm FOR CHECKOYT oF KALFIL sUkoyl Iwt

END

BLO anOpE DATA
316409'l-|2111q16llo;3|36-“|1004l620|lf!|5|102°5’1s
chimthlo )2,

END

bCD 3S0DLRCE Dava
SIT 14494140
51T 3:89,00%
thD .
ECO 3C0RPUCTOR LaTA
Sy Ledl o2 s AR5 3 K210y 1o 49220 ,K22,30115,425:K23
SIV 452,3,A29, Kk 495,215 ,A25,K25
633207403, 5002989415 ,02
GEN wgyu, 30 v5,00e42Eey
=1331s62e0 2L -9 '
GEN =iyt 1200430 ] e 2E=9
~EB It eG4 h 02k Ty m 20034438 2Emy
“Z Ll a1 e2E=91=2204 600 2Em9,%2335 600269
ENE
BLD 3CONSTANTS uaTa
VTENEND ol T T yma

1=& 2 oriirbt i OF ST PAUAMETERS
N ® oplMobw DF MOpES
3=0, % $ FERTUR/ATION FACTOR

28 2020221420233,2928,02,251,2

thy

LD 3aMNKAY VAT,
2ol s Us 14001 et 10N $ NQISE EgTIHMATES

Dallobe 3000 scelE~1ysLelbm]Pr0.1E=19,E8L % EKg EST SwuRD

3¢2) 45 s0FACE 10 EnD $ fIMmbk HISTORY MATRIA
S»>PACEsb6,END * SPACE FCR INITIAL YEMPERATURES
Falo a5 0041001500 42005 a BN 8 TIME VARYING § CURVE, SAWTUITH
Fhada2y304,un0 § MOLASURED TEMP NONDES FOR KALFIL
12314293 04,5,6,END $ NOUE NYMBERS FUR PRELTMI
LBv109,8012,1B5234FND 5 SOFT CONDYCTOR NUMBERS FOR KALFIL
159194985 12,180239END % SUFY CONDUCTOR NUMBERS FOR PHNTH]

2530eve75, 1900, 1028,E5D $ vARIABLE ConpucTivITy
FEsSPACE .4, END 3 SPACE FOR ORIGINAL PARAMETERS
9245PACE 5, L N0 § SPACE FoR PERYURBED PARAMETERS
§345PACE 4, LD $ SFACE FOR (ORRECTED PARAMETERS
9%, 4PACE 4,0 ND % SPACE FUOR QRIGINAL TEMPELRATURES
95, 5PACE 6 ,E0ND $ SFACE FoR PERTURPED TEMPERATURES
96 ¢SPACE s g, END $ SPACE FOR CORRECTED TEMPERATURES
97 a5PACL 4, anD S SPACE FOR PERCENTAGE QfF
%8 ' ’

BlD 4 NODL NUMBER

8Cu & opRrRIGINAL REsUL 'S

BCU & PERTURBEN KESUL Ty

BCD § CounrRECTED RESULTS
EnND

B-16
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TABLE B-7 (Cont.)

¢
BCD 4 -grIGINAL VALUES
ECO 4 PERTUR3IED VALUES
BCO 4 CormrECTED VALUES
BL0D 4 ConDUuCToR NUMBE &
BED 4 PERCENTAGE OFF
END '
END

BCO FeEXpCuTlOn
DIMENSTOL X(SL0g)
KDIM = SgnQ

NTH = g
FPRINT
GPRILT
BLOAKY (AT K21 4k24,68:6525618,623) § SAVE nkig PARAHETERS
SHFTV(5+T],A5) S SAVE IWlv1aL TCHPERATUES
CNFRODL $ SIMULATE TEST DATA
SHFTVI&sTY ,a04) $§ SAvE oRIGINAL KgsulTs
TIMEDQ = g.0
SHETV{Ss45,71) $ RLSET INITIAL YEMPERATGLKES

THE FOLLOWING SCALE CARD PuUKTURES SoFT 6 FACTgks .k valyks
5CALE¢K3uK2].K21,Kgq,e24,58,63.512,612,615,618,623,023)
BLDART(A?Z,&Z],KEQ,GEnGIZ,&lﬁ.GZS) $ SAvE FERTURBELD PARAM,

CNFROL $ UBTLIN FERVURGEL TEUPERATURES

SHFTV (62T ,29%) % SAvE PERTURBED RESULLTS
TIMED = pay

SHFTVY{LAS 7)) % KLSET InIT(AL TEMPERATUKES
ITEST =
: CNFHDL  PERVORM CQORKRECYJON RUN

BLOARY(AII K21 4249,08+612,6)8,623) & SAVE CCRHECTED PARAMN:,
SUBARYIR] ya93049),a%7 $ 0BTAIN CORKECTION DIFFERENCE
DIVARY (K1 AY7vAYL4A971 & CUNVERT TO RERCENT
ARYMPY (K] 4497 410U0eG4A9 7}
pRN1M1¢K1.199*13.A|5+1,a99+znn91.A99+5.A92,A99+9.A93
A99¢17+4A97) & PRINT THe CONDUCTOR LATA

SHFTVY(5s45,T1) $ RESET INITIAL TUEMPEKATUKRLES
ITEST = g '
TIMEQ = O¢0 . '
CHNFRDL $ 0BTAIN CORRECTED TEMPERATURFES
SHFETVIAYT L, AGé) $ SAvE CORRECTED RESULTS

SUBARY(KZ2,a%941A94,497) $ OBTAIN CORRECT!aN DIFFEKENCE

ARYADD(K2, 4944800 3,874} % CONYyERT TQ RANKIKE

DIVARY{KL RA970A94,497i 5 CONVERT TO RERCENT, RANKINE bBASE

ARYSUB(K2,4940496045,874) 5 CONVERT YO DEGRELS F

ARYMPYLKZ 3 A97)1000,,A77) :

PRNTMI(K2|A9B‘I.AIZ+i|A?R#b.AQQaAQBf?]A9S.A9ﬁ+I31“95
AY9417+A97) § PRINT TLMPERATURE DATA

END .

B-17
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TABLE B-7 (Cont.)

B8C0 3vARIABLES )
END
BCO 3VARIABLES 2

IFUITEST,EGeO) RETURN :
KALFILUOsAL 1 Dp0ehiNeA3 A2) '
END
BCD 30UTPUT CALLS
IF(TIHMEO,EQeBeq) CALL VARBL2Z
TPRINT
TESTHR(JTEST 4,71, YIMEN, A3} S STORE ANALYTICAL TEMPERATURES
END

171<
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B.5.3 Time-Temperature History Matrix (TESTMP)

B.6

Subroutine TESTMP which is part of the parameter correction
package aids the user in forming a time-temperature history matrix.
Users instructions are given in Table B-8,

Sensitivity Analysis '

Accuracy bounds of the analytical temperature may be generated
by the use of the sensitivity-temperature error program (STEP).
Theoretical development of STEP and brief users instructions are
presented in Appendix C. For details on the overall program
instructions, the reader should refer to Reference 3. STEP provides
a means of generating temperature uncertalnty due to parameter
uncertainties and a means of assessing the relative "hardness" of
"softness" of a parameter with respect to a given temperature.

173< ~ -
B-19.
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TABLE B-8

SUBROUTINE NAME : TESTMP ' &

PURPOSH:

This subroutine aids the user in forming a time-temperature
history matrix.

RESTRICTIONS :

See below.

CALLING SEQUENCE: TESTMP (I,J,AT(DV),X,AM(IC)

Where: I is always a zero integer
J is the number of values to be stored from AT
AT is the start of an array of values to be stored
in AM

X is generally TIMEN and is always stored ahead of AT

AM is a matrix array which must have J+1 columns

NOTE:

This subroutine is generally called upon in the Output Calls
block. Each time it is called 1 is updated by one and another row
added to the AM matrix. When AM is full its operation ceases.
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C. STER (§pnsitivity Temperatuie Error Program)

c.1 Introduction

Subroutine STEP (Sensitivity—Temperature Error-Program) generates
static sensitivity coefficients that may be used to assess the rela-
tive parameter effects on a specified temperature or to assess the
uncertainty of a given temperature. Theoretical development is
reported elsewhere ,*but briefly STEP is based upon a derivative
operation on the steady state heat balance equations.

Q= I a (T - T,) + jii b s Ty = TP (c-1)

i=1,2, .. ,n

where: Qi ig the net heat input to the ith node

aij is coefficient for conduction and/or convection

bij is the coefficient for radiation exchange

p is the sum of n variable and p-n fixed temperatures

The derivative operation is conducted in terms of Qi, a,,, b
and T, (j> n) and is expressed in a matrix form; the solittion’of
matrii equations yields the sensitivity coefficients

% I

8T, | |
-é—'-'-— , fork=1, . . , n (C~2)
')
£ =Lktl, .. , p
Ty, fori=1,..,n O (c-3)
abkﬁ =1, . . , 1
L=Itl, . . , P
BTi
= s fori=1, . . , n (C-4)
k&
=1, . . ,n
£ =k+l, . - , P
BTi . .
56 for i=1, . . , n_ , {C-5)
, Qk .
k=1, «. « , 1
oT,
B ,fori=1, .. ,n (C-6)
Tk ‘ .

k=ntl, . . , P .
* Ishimoto, T. and Bevans, J. T., "Temperature Variance in Spacecraft Thermal

Analysis," J. of Spacecraft, Vol.(?a-No. 11, pp 1372-1376, November 1968.
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The sensitivity coefficients indicated by equations C-2 through
C-6 are employed to generate temperature deviation expressions.

Raridom Temperature Deviation

The temperature deviation in the random sense, (ATi)r may be
expressed ag: A
n P
9T aT
(AT,) = E i 2 P i W2
r k=1 (aqk A+ ‘-a-rk ATy

n p 1/2
+ I z (Efi_ A )2 - (EEE.Ab )2
k=l 2=kl |'Ba_ "3 ) 0By, KL

Linear Algebraic Temperature Deviation (€-7)

If the parameter perturbations are deterministic, then the
temperature variations should be based upon the algebraic sum of the"
individual parameter perturbation effects. If (AT ) _ represents the

linear algebraic temperature deviation, the expressidn is written as:

n 4T P BTi'

i
(Ar) = I wlaq + I kAT
VA a1 9 F ey O K
g .g (BTi A BTi i, ) 8
+ = fa, , + =——— Ab Cc-8
kel =kl O KA 3y, kA '

i=1,2, .., n

Linear Absolute Temperature Deviation

If a worst-case temperature deviation is desired, the partial
derivatives and the individual parameter perturbations are evaluated

in an "absolute'" sense, If (ATi)a represents the linear absolute
temperature deviation, the expressgon ie written as:

n BTi P BTi
LA ok I a1,
c-9
A [ NS B
k=1 fekil | 190 KA ] by, KR
‘ 1=1,2,..,n
175<
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c.2 STEP User's Directions
c.2.1 SUBROUTINE NAME: STEP
c.2.2 - PURPOSE

C.2.2.1 For generating static sensitlvity coefficients with respect to
&g bkﬂ’ Qk’ and '1‘k (for boundary nodes).

€C.2.2.2 TFor generating temperature deviation in the root mean square
sense, in the algebraic sum sense, and in the absolute value
sense,

C.2.3 RESTRICTIONS

C.2,3.1 CINDSL must be called before STEP is called since the lohg pseudo
compute sequence and the arrays containing temperatures, con-
ductances, and heating rates are utilized.

C.2.3.2 Parallel linear or parallel radiation conductors are not permitted.
€C.2.3.3 Al and A2 must be positive arrays.

C.2.3.4 The maximum number of nodes {diffusion plus arithmetic) that can
. be accommodated is approximately 200.

C.2.4 CALLING SEQUENCE

C.2,4.1 STEP(AI(IC),A2(IC))

where: Al(IC) is the array number for print specifications
A2(IC) is the array number for varlance specifications

C.2,4.2 Format, Al and A2
ic,?C,0p,0p,...,0p,PC,0p,...,END
where: IC is the array number
PC is a parameter code (Refer to Table C-1)
Op is an option {for Al, refer to Table C-2; for A2
refer to Table C-3). '
c.2,5 NOTES

C.2.5.1 This subroutine requires N2 + P locations of dynamic storage.
N is the sum of diffusion and arithmetic nodes (non boundary
nodes) and P is the total number of nodes (diffusion plus
boundary nodes).

€.2.5.2 In Table C-2, for the option designated by NODE, approximately
' 100 node numbers may be specified.

1'76<
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C.2.6
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C.2.6.2

€.2.6.3
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In Table C-3, approximately 35 individual variances may be
specified, not including those generated under option ALL.

Based upon a number of models ranging from 30 to 164 nodes, the
solution time can be estimated in a very approximate sense by,

Solution time (minutes) = 1/2 (3% 2

+

where n is the number of nodes (diffusion plus arithmetic)

ILLUSTRATIVE STEP INPUT

The STEP input itself is illustrated directly below, but it should
be noted that STEP requires SINDA input considerations. The
combined STEP-S5INDA requirements ‘are illustrated in a step by

step fashion in Table C-4.

Array Al . 1,A,LIST,ALL
B,PURE , ALGORD,NODE, 1,4
Q,ABSORD,NODE, 2, 3
CONT ,ALL ,PURE,DELTA
DELTAT ,END

Array A2 2,A,ALL,.1,B,ALL,.1,3,4,.05
Q,ALL,.08,2,.1,4,.1,CONT,ALL, .05,END

Note that the node numbers specified are actual, not relative
numbers,

FLOW DIAGRAM

A flow diagram of the major logic for the STEP subroutine is
presented in Figure C-1,

177<
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TABLE C-1
PARAMETER
CODE PARAMETER
A Linear conductors
B Radiation conductors
qQ Source terms (heating rates)
CONT Constant temperatures
DELTAT This is not a parameter, but rather a signal
to the program to calculate and print the three
types of deviation. Use in array Al only.
Options in Table (-2 do not apply.
TABLE C-2
OPTIONS EXPLANATION OF OPTIONS

LIST The parameters and variance printed.

ALL All sensitivity coefficients wultiplied by
the parameter variance are printed,

PURE Sensitivity coefficients (not multiplied by
parameter variance) are printed,

DELTA Sensitivity coefficients multiplied by para-
meter variance are printed; this option need
be used only in conjunction with option PURE.

PURE, DELTA Both outputs under PURE and DELTA are printed.

ALGORD Each set of output called by ALL or PURE is
arranged by the magnitude of algebraic
values from the largest to the smallest.

ABSORD Each set of output called by ALL or PURE is
arranged by the magnitude of absolute values
from the largest to the smallest,

MULT ,n Qutput as called by ALL or PURE is limited by
the print limiting multiplier, n. The
sensitivity coefficient, dT, is not printed if

L ‘ dP
dr dr
dp dp max
NODE,il,iz,... The sensitivity coefficients for the speci-

fied nodes (i1 ..) are printed.

R
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TABLE C-3
OPTIONS EXPLANATION OF OPTIONS
ALL,n,il,ml,iz,mz,..,ik,mk This option applies to parameter codes

Q and CONT only. The variance will be
computed from the relationship,

variance of parameters = n (value of
parameter)

unless exceptions denoted by

il’ ml, 12, Mo yenes ik’ m

are specified, i, 1s the node number and
is the factor defined in the same
manner as n,
ALL,n,i This option épplies to pavameter codes
A and B only. It is similar to the
option above except that the user must
supply the adjoining node numbers
(ik,jk) for the conductors.

1!jl)m1!;"
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TABLE C-4

ILLUSTRATION OF COMBINED SINDA-STEP INPUT

ITEM INPUT COMMENTS
(1) BCD 3THERMAL LPCS
(2) BCD 9 TITLE Optional
" n "
(3) END
(4) BCD 3NODE DATA (Refer to Section 4.2.2)
(4.1)  N#, Ti' c N## is the actual node number
Nodes with a capacity value are identified as diffusion nodes.
(4.2) N#, Ti’ -1 -1 means arithmetic node
(4.3) N, Ti' 0 The minus sign in front of N means boundary node.
0 is a convenient number to use as a space holder in coré
(do not leave blank)
(5) END Note: A table relating the actual node number to the
relative node number will be automatically printed.
(6) BCD 3CONDUCTOR DATA (Refer to Sectiomn 4.2.4)
(6.1) Gi#, NA, NB, G G# i1s the relative conductor number.
G 1s the conductor value between adjoining node number
NA & NB
(6.2) -G#, NA, NB, G The minus sign in front of G# means radiation coupling.
G means the radiation coefficient value.
Note: A table relating the actual conductor number to the
relative conductor number will be automatically printed.
(7) END '

VINGOHYD THAVIE GOMNIIO T
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ITEM

INPUT

COMMENTS

(8)
(8.1)

(8.2)

(9)
(10)

(10.1)

BCD 3CONSTANTS DATA
NLOOP, N, , DRLXCA, N, , ARLXCA, N
DAMPD, N

1’
5

2’

Kps Ny Ky Noyeney Kr;, N_

END

BCD 3ARRAY DATA

1, 4, LIST, ALL

3!

DAMPA, N

4

" Note: Tpey = (1 - Ng) Told + N T'ne

(Refer to Section 4.2.5)

NLOOF means the number of iteratioms; typically Nl = 200
to 1000.

DRLXCA means diffusion nodes relaxation criteriom allowed
(convergence criterion for diffusion nodes) ;
typically, No = .00l to .01.

DAMPA means damping for arithmetic nodes; typically, Njy = .7
but for radiation dominated problems, N, may be smaller
than .001.

DAMPD means damping for diffusion nodes; typically, same as
DAMPA.

W
Knh represents a number used in conjunction with BCD 3
variables, which is discussed below (Item 14).

N, represents heating values.

The array data contain the input data for the sensitivity
coefficients of each parameter category denoted as

A, B, Q, or CONT. The input designations and explanation:
are presented in Tables C-1, C-2, and C-3.

To illustrate the opticns that are offered, the STEP input
example of Section C.2.6 will be presented and discussed.

1l means array 1. A means linear conductors. LIST means
that the A parameters and variance will be printed.
ALL means that all sensitivity coefficients, in terms of
A, multiplied by the parameter variance will be printed.

SWILSAS GARIA
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ITEM

INPUT

COMMENTS

(10.11)

{10.12)

©(10.13)

- (10.14)

(10.2)
(10.21)

(11)

B, PURE, ALGORD, 1, &4

Q, ABSORD NODE, 2, 3

CONT, ALL, PURE, DELTA

DELTAT, END

B means radiation conductors, PURE, ALGORD, NODE, 1, 4 means
that the sensitivity coefficients in terms of B, but not
multiplied by the variance, will be printed for nodes 1 and
4 only and will be arrxanged from the largest to the small-
est in accordance with the algebraic values,

Note: If all of the sensitivity coefflclents were desired,
the input would read: B, PURE, ALL, ALGORD.

Q means heating rates, ABSORD, NODE, 2, 3 means that the
gensitivity coefficients (multiplied by the variance} of
nodes 2 and 3 will be printed and arranged from the largest
to the smallest in accordance with the zbsolute values.

CONT, ALL, PURE, DELTA means that both of the outputs, as
called by options PURE and DELTA, will be printed in terms
of boundary temperatures, CONT.

" DELTAT means that the three types of temperature deviation

will be calculated and printed. END means the end of data.

2, A, ALL, .1, B, ALL, .1, 3, 4, .05, This input means that all variance of A is equal to .1A, all

ALL, .05, END

END

variance of B 18 .1B except for B between nodes 3 and 4,
which 18 equal to .05B, all variance of ¢ is equal to
.08Q, except for node 2, which is equal to .1Q and node 4
which is equal to .1Q, and all variance of CONT (boundary
temperatures) which is equal to .05CONT.

O NTD TSRO GO I
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ITEM

INPUT

COMMENTS

1z) -

(13)

(13.1)

(13.2)

(13.3)

(13.4)
(13.5)

(14)

(15)

- BCD 3EXECUTION

DIMENSION X(Nc)
NTH=0
NDIM = N

c

ARVMPY (Np, GN;, 0, ON,)

CINDSL
STEP {(Al, A2)

END

BCD 3 VARTABLES 1
STFSEP (K2,Q2,Q13)

END

BCD 3VARTIABLES 2
END

BCD 30UTPUT CALLS
TPRINT

Dimension X(Nc) represents the amount of core storage required)
The number N can be estimated from A.5.1, N, = N¢ + P. N
is the sum of diffusion and arithmetic nodes (non-boundary
nodes) and P is the total number of nodes including
boundary nodes. '

NTH=0 is a pointer.

ARYMPY means. array multiplier; Np is the total number of

radiation conductions starting from conductor number GNqs
¢ = .1714x1078,

CINDSL is a steady state netowrk sclution subroutine.

Calling sequence for STEP.

BCD 3VARIABLES 1 is used in copjunction with Item (8.2).

STFSEP literally means stuff separately; this means that the
heating rate Q on node 1 has the value N1 of item (8.2),
Nodes 2 and 13 have the heating values Ny of item (8.1),
and so forth. :

&I,

o
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REQONDD BEALCH, CALIFDRMNA

SETUF CALCULATI@N FLAGS
FRPM PRINT ARRAY

¥

SETUP AND INVERT
THE BETA MATRIX

%

WRITE BETA INVERSE
@N DRUM, BY R@WS

J

START L@$HT TP CPrPUTE
PARAMETER DERIVATIVES'
I=1

P - ~

READ THE ITH RyW @F
BETA INVERSE FR{#M DRUM

C¢YMPUTE DERIVATIVES; SUIS
AND/#R PRINT AS REQUESTED

J/

CE¢MPUTE DERIVATIVES; SUK
AND/@R FRINT AS REQUESTED h

_/

C@PMPUTE DERIVATIVES; SUM
| AND/@R PRINT AS REQUESTED

J

C@MPUTE DERIVATIVES; SUM
AND/@R PRINT AS REQUESTED

_J
&y I=I+1 —J)'

Note: N = number of
variable tempera-
ture nodes.

FIGURE C-1. FLOW DIAGRAM OF MAJOR LOGIC
c-11 1R84<
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D. EXAMPLE OF SINDA USERS INSTRUCTIONS

D.1 Introduction

Appendix B provided instructions on the use of the varicus
subroutines available in the thermal network correction package
and Appendix C provided detailed input procedures on the sensitiv-
ity temperature error program (STEP) for the generation of thermal
sensitivity coefficients and temperature deviations. Since these
instructions were tailored for specific subroutines, many of the
options available on SINDA were mot used. As a result additional
user explanations are presented here.

9.2 Physical System and Mathematical Model

D.2.1 Physical System

The physical system is a hollow "thin-shelled” cube with one
face open to Space as shown in Figure D-1 (a). A variable external
heat load iIs impressed on surfaces 1 and 3.

D.2.2 Mathematical Model

The five-node mathematical model has been penerated teo
describe the physical system in its environment. The heat load on
surfaces 1 and 2 as shown in Figure D-1 (c) is depicted as a saw-
tooth and several of the conductive couplings are considered to be
temperature dependent with a fimctional form as shown in Figure
D-1 (d). Other interconnections and values are shown in Table D-1.

D.2.3 Objective

The trapsient temperature response of each of the five nodes
is desired.

D.3 Users Imstructions

Among the numerous transient network subroutines (Appendix A.2),
the user must decide upon a particular numerical integration schene.
For this example, the explicit forward differencing method '
CNFRDL (A.2.5) with the long pseudo compute sequence (LPCS) will
be used. Step-by-step users procedure for this illustrative
example follows. The computer listing for this problem is found
on pages D-7 through D-9. ’

D.3.1 Title Bloek (Refer to Section 4.2.1) i -

(Col) 8 12

BCD 3THERMAL LPCS
BCD 9 5 NODE SAMPLE PROBLEM FOR SINDA
END

Comment: Subroutine CNFRDL requires LPCS.
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D.3.2 HNode Bata (Refer ro Section 4.2.2)

(Col) 8 12

BCD 3NODE DATA
1,64.9,1.,2,114,6,1.,3,36.4,1.,4,62.1,1.,5,102.6,1.
-6,-460.,0.

END

Comment: Node number, initial temperature, and capaci-
tance; thus 1,64.9,1. means: node number, 1: initial
temperature, 64.9°F; and capacitance, 1. Btu/°F. Minus
sign in front of node number 6 means boundary node. A
dictionary relting relative node number ot the actual
node numnber is given on the computer listing, Page D-7,

D.3.3 Source Data (Refer to Section 4.2.3)

The source data may be inputted in the Source Data Block or in the
Variables 1 Operations Block. In this example the Variables 1
Operations Block is employed. In the event the Source Data Block
was to be used, the input would cequire the SIT option for nodes

1 and 3.

D.3.4 Conductor Data (Refer to Section 4.2.4)

{Col) 8 12

BCD 3CONDUCTOR DATA
51V 1,1,2,A25,X21,2,
SIV 4,2,3,A25,K24,5,

5,K22,3,1,5,A25,K23
5,K25
5

3,1,6,.2E-9

GEN -14,4,1,2,0,3,1,.2E-9,1,,1.,1.
-18,3,4,.2E-9,-19,3,5,.2E-9,-20,3,6, .2E-9
—21,4,5,LZE-9,~22,4,6,.2F—9,—23,5,6,.2E—9

END

Comment: SIV option (refer to Page 4-15)allows linear
interpolation of a temperature varying property; input
1,1,2,A25,K21 means: conductor,l; between nodes 1 and 2;
temperature varying values in Array 25; multiplied by
constant in address K21. 1If the conductor is a constant
a blank code is used; thus, 6,3,4,.2: means.conductor 6;
between nodes 3 and 4; with value .2.

GEN option (refer to Page 4-9) allows the user to gener-
ate a sequence of conductors; thus ~9,4,1,1,0,2,1,.2E-9
means: starting with conductor number 9 (minus indicates
radiation coefficient), four conductors, 9,10,11, and 12,
between nodes 1 &2,1 & 3, 1 & 4, and 1 & 5, respectively
with a value of .2E-9 will be generated.

A dictionary relating relative conductor number to actual
conductor number is given on the computer listing,
page D-7, '

-2 186<
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D.3.5 Constants Data (Refer to Section 4.2.5)

{Col)

& 1z
BCD 3CONSTANTS DATA
TIMEND, 2.0 ,0UTPUT,0.1

21,.2,22,.2,23,.2,25,.2,25,.2
.END . ‘ .

Comment: Control constants are listed in Section 4.2.5.2;
TIMEND,Z2.0 means that the stop time for the transient
analysis is 2.0 (hrs). OUTPUT,0.1 means that the interval
‘for activating OUTPUT CALLS is 0.1.

The numbers 21,.1 mean constants address 21 (this is con-~
cerned with the conductor data D.3.3) with a value of 0.1.

D.3.6 Array Data (Refer to Section 4.2.6)

{Col)

8 12
BCD 3ARRAY DATA

9,0.,50.,1.,150.,2.,50. ,END $TIME VARYING O CURVE,SAWTOOTH

25,0.0,0.75,100,,1.25,END  $VARIABLE CONDUCTIVITY
END

Comment: MHeat iInput at three different time points (0.,
1., & 2.) are stored in array 9. At points between the
data, a linear interpolation is used. Array 25 contains
the thermal conductivity value at two different temperature
points, O°F and 100°F.

D.3.7 Execution Operations (Refer to Section 4.2.7.2)

(Col)

8 12

BCD 3EXECUTION
DIMENSION X(5000)
NDIM = 5000
NTH = O

CNFRDL

END

Comment: 5000 represents the working location. CNFRDL
is the explicit forward differencing subroutine (Appendix

A.2.5).

D.3.8 Variables 1 Operations (Refer to Section 4.2.7.3)

{Col)

8§ 12

BCD 3VARIABLES 1
D1DEG1 (TIMEN,A9,Q1) $ TIME VARYING Q ON NODE 1
MLTPLY (Q1,0.5,Q3) $ VARIABLE Q ON NODE 3

END

Comment: D1DEGl is the single variable linear interpola-
tion subroutine (Page A.4-4).

p-3 ARY<



TreVS svsreres

REDODNDO BESCH, CaLIFORMNA

D.3.9 Variables 2 Operations (Refer to Section 4.2.7.4)

(Col) 8 12

BCD 3VARTABLES 2
END

Comment: No variables 2 operations required.
D.3.10 Output Calls (Refer to Section 4.2.7.5)

(Col) 8 12

BCD 30UTPUT CALLS
TPRINT
EEKD

Cowment: TPRINT is the output call for 211 nodal
temperatures (Page A.7.3).

D.4 Computer Listing

The computer listing for this five-node example is found on
Pages D—7 through B-9,

D4
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Yo e

Heat Input (Btu/hr)

@ © (Space)
460
1
l -
L
| [
2 | |
5 2
i 5 b l
R |
3 3
(a) Five-Node Model - (b) Five-Node tModel Folded
: Inside Qut
5
4
“
= .
.H .
4
5]
3 .23
o
Q
L]
2 ,
A .
@
.H 7
B
S 0
0 1o
LI 1 2 -
Time (Hr) Temperaturg
) Conductors: a12
HEAT INPUT ‘
a b N .
Varia le _ a),
Node 1, Ql = 50, Q2 = 150
a
15
2 = 95 =
Node 2, Q = 25, Q, 75
Nodes 2,4,5 Q.= 0 223
(c) Heat Input Conditions ays

(d) Variable Conductors

FIGURE D--1. FIVE-NODE HOLLOW CUBE MODEL

D-5 | | 89



| TABLE D-1
NOMINAL PARAMETER VALUES, FIVE-NODE MODEL, VARTABLE HEAT INPUT

T
?
1
‘

Coefficients Value Coefficients Value Coefficients Value
a5, Figure D-1 ob, 2.0 x 10710 (no dimen.) obg, 2.0 x 10710 (no dimen.)
al, " ob, 2,0 x 10710 (no dimen.) c 1.0 Btu/°F
a g " 0b24 2,0 x 10710 (no dimen.) c:2 1.0 Btu/°F
8,4 " aby 2.0 x 10720 (no dimen.) c, 1.0 Btu/°F
a, " obzs' 2.0 x 10710 (no dimen.) c, 1.0 Btu/°F"
3, 0.2 Btu/hr °F oby, 2.0 x 10710 (no dimen.) s 1.0 Btu/°F

o ass 0.2 Btu/hr °F obye 2.0 x 10719 (no dimen.) Q Figure D-1
s 3, 0.2 Btu/hr °F Gb45 2.0 x 10710 (no dimen.} Q2 _0 Btu/hr
oby, 2.0 x 10710 (no dimen.) ob, ¢ 2.0 x 10710 (no dimen.) Q, Figure D-1

ob 5 2.0 x 10710 (no dimen.)  ob . 2.0 x 10710 (no dimen.) Q, 0 Btu/hr

Eg oy, 2.0 x 10710 (no dimen.)  ob,, 2.0 x 10710 (no dimen.) Q 0 Btu/hr

WNGOSIYD HOTIB OOMOO I
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ACD ITHERPMAL LPLS

ACD 9 5 NODE SAMPLE PROALEM FNR QINDA

END

ACD 3MODE DATA
1eRG.00lev2r128.6r1493¢3R8el,08¢R2,1, 1-9591”?.601.
=6rmUfD.0 0,

END
RELATIVE MODE NUMTERS ACTUA). NONE NMUMREWS
1 THRU 6 1 2 3 q 5 6
MODE AMALYSIS... DIFFUSION = By ARITHMETIC = 0 ANIIMNDRY 2 1, toTaL = 6

RCD 3CONMDUCTOR DATA
SIV 19192, A251K21»2¢1 sl ﬂ?ﬁo'??oSil'ﬁ!A?SfK?‘
SIV Ue29r3,8251K26:590205+A25¢¥?5
ArBrlU o207 0305+ 21Rs150.7
GEN =QslUs1+1e0y2¢11r.2F~9
~13¢1vHePE~D
GEN =180¢l4,1+2¢0:+301¢.2E=-0C
=183, 40 2F=0s=193318) 2F=Fs=200 34y ,2E~Q
“214sS50aPFE=9 =220 sBr s PF "D =2515 k¢ O2E=0
END

RELATIVE COMDUCTOR NUMRERS ACTUNL CONDUCTOR NUMPFRQ‘

1 THRU in 1 2 3 4 5 5 T A - e
11 THRY 2n 11 12 13 14 1b 15 17 18 19
. 21 THRU 23 1 - P2 23
CONDUCTOR ANALYSIS..s LINEAR = Bs PADIATION = 15, ToTaL = 23 CONMECTIONS = 23

b ]
ACD JICOMSTAMTS DATA
TIMEMN 2,0, 0UTPUT »0. 1
Plea202204202F0:29028¢:202%0 .7
EHD
RCD XARRAY DATA
Oy, rS0.rl,e1S50.02,+%0,+FMR & TIVE VARYIMG 0 CURVE, SAWYNOTH
250N 0. 7R 1NN ¢ 1. 25 END % VARTABLE COMDUCTIVITY
END
RCD IEXECUTIOM
DIMEMSION X {5100}
MDIM = 5000
MTH = N
CNFRDL % EXYPLICIT FORWARD DIFFFREMCING USING LPCS

nnm

END
RCD IVARIARLES 1 .
MIDEGI(TIMEN»AG:QY) s TIVE VARYING @ ON MODE 1
MLTRPLY {Q1+0,5,03) % VARTABLE G NN NONE 3 ALSO
£rD .
PCD 3VARTABLES 2
FHn '
ACND ROUTPUT CALLS
TPRINT
END

mn

u
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REQOMNGO BEACH. CAaLIFOANS

CONTROL CARDS AND DECK SETUP

The SINDA program, although designed for use on a variety of
computers with a minimum of change, is presently operational only
on the UNIVAC-1108 EXEC-II system. The system control cards, deck
setup for the UNIVAC-1108 for the listed installations are reported
here. Included in the presentation are the various disk, drum and
tape unit designations and other pertinent information.

Machine Installation Page
UNIVAC-1108 Jacobi Computation Center E-2

Santa Monica, California

UNIVAC-1108 NASA/MSC, Houston, Texas E-4
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AEQONGOD BEACH, CavkCGRNA

UNIVAC-1108 DECK SETUP JACOBI COMPUTATION CENTER, LOS ANGELES

The EXEC-II, CUR and FPTRAN V systems software for the UNIVAC-1108
are well suited for operation of the SINDA program. The two portions of
the program, absolute Preprocessor and relocatable Variables, are contained
on magnetic tape as files one and two respectively. The user must instruct
the operator to mount the tape on drive F. The A symbol indicates a seven
and eight punch in card column one. The deck setup is as follows:

Cols 1 6 12

A RUN
ARX ASG PF=SINDA
ARX A5G K
AN . XQT CUR
IN F

AN QT SINDA/ABS

< blank card unless RECALL
« data deck through END ¢JF DATA

SN XQT CUR

ERS
IN F
TRL  F

AN FPR,K SINDA
AN FPR,K EXHCIN
AN F@R,K VARBL1
- AN T F@R,K VARBL2
AN F@R,K $UTCAL

< "load and go" subroutines with A
F@R ‘cards

AN XQT SINDA
& FIN .

0

NOTE: See the next page for tape usage requirements for variocus options.

It is recommended that the SINDA user acquaint himself with the
CUR operating system and the basics of F@RTRAN V, particularly
logical IF's, . -
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"EQONGD BEALH. CALIFORNA

UNIVAC-1108 TAPE USAGE JACOBI COMPUTATICN CENTER, LOS ANGELES

UNIT FARTRAN PROGRAM
DESIGNATION NUMBER VARIARLE FONCTION
DRUM(M) 15 LUT3 Copy of original problem data.
DRUM(D) 4 LUT1 Data number definitions.
F g —— SINDA productilion tape.
DRUM(I) .12 LB3D Data tape (original problem and all
' parameter changes).
K ‘ 14 LB4P Program tape (contains penerated
Fortran routines; SINDA, EXECTN,
, VARBL1, VARBL2, @$UTCAL).
DRUM 27 INTERN Data conversion scratch tape,
R 21 LUT? Problem recall data tape.¥
s 22 STAPE Problem store data tape.*
Reread 0 KRR ‘Fortran reread unit,

* These tapes need not be assigned 1f the particular options are not used.
The STPREP option requires assigning and saving tapes 14 and 22. The
RECALL options requlres assigning and mounting the above tapes on 14
and 21 respectively,

E-3
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AEQUNDD BEACH. CALIFDRARMA

UNIVAC~1108 DECK SETUP NASA HOUSTON

The EXEC-II, CUR and FPRTRAN V systems software for the UNIVAC-1108
are well suited for operation of the SINDA program. The two portions of
the program, Preprocessor and Variables, are contained in binary on
magnetlic tape as files one and two respectively, The user must Instruct
the operator to mount the tape on drive F. The V symbol indicates a seven
and eight punch in the card column. The deck setup 1s as follows:

Col 1 6 12

v (RUN Card)

v (MSG Card)

YRX ASG P= (See note below)
VRX ASG  D,J,K,M .
v XQT  CUR

IN F
VN XqQT SINDA/PREPRY
+ blank card unless RECALL

<+ problem data deck through END @$F DATA

v XQT CUR

ERS

IN ¥

TRI F
YN FPR,K  SINDA
VN FPR,K  EXECTIR
YN F@R,K  VARBL1
YN F$R,K  VARBL2
VN FPR,K  @UTCAL

+ "load and go" subroutines if any,
with v FgR

VN XQT SINDA
v EQF

It 15 recommended that the SINDA user acquaint himself with the CUR
operating system and the basics of F@RTRAN V, in particular, logical IF
statements.

The operator instruction ticket accompanying the job must have the
SINDA production tape designated as input on ¥ and request D, J, K, M
scratch tapes, This job's compatable with all the various 1108 systems
at MSC and is required to be rum under the FPRTRAN V system.

NOTE: The latest SINDA reel number may be obtained from R.L. Dotts,
ES551, X3528.

E-4
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REQLMNUOG BEEACH. CALFORAL

UNIVAC-1108 TAPE USAGE NASA HOUSTON

UNIT FORTRAN PROGRAM
DESTGNATION NUMBER VARIABLE FURCTION
DRUM(D) 4 LTy - Data number definitions.
F 8 SINDA production tape.
DRUM{J) 12 LB3D Data tape {original problem and
A all parameter changes).
K 13 LB4P ‘Program tape {(contains generated
Fortran routines; SINDA, EXECTN,
VARBL1, VARBL2, $UTCAL).
DRUM(M) 15 LUT3 Copy of original problem data,
DRUM(X) 27 INTERN Preprocessor scratch,
R 21 LUT? Problem recall data tape.¥
5 22 STAPE Problem store data tape.*
Reread 30 KRR Fortran reread unit.

. * These tapes need not be assigned if the particular options are not used,
The ST@REP option requires assigning and saving tapes 13 and 22. The
RECALL options requires assigning and mounting the above tapes on 13 and
21 respectively. '



